Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms
Abstract
:1. Introduction
- develop advanced machine learning models for estimating sugarcane AGB using a combined time series of S1 and S2 data ground datasets;
- estimate sugarcane AGB for 2018 and 2021 within the entire Kumphawapi district using a combined time series of S1 and S2 together with machine learning methods;
- map sugarcane carbon stock for 2018 and 2021 using sugarcane AGB maps and a conversion factor;
- transform the optimized-feature predictive model and derive spectral information with several additional indices for mapping AGB and carbon stock across the larger geographic area of Udon Thani province in Thailand.
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Sugarcane Field Database
2.4. Satellite Image
2.4.1. Sentinel-1 Data
2.4.2. Sentinel-2 Data
2.4.3. The Median Compositing Approach
2.5. Estimated Aboveground Biomass (AGB) and Carbon Stock
2.5.1. Feature Selection
2.5.2. Random Forest Regression (RFR)
2.5.3. Support Vector Regression (SVR)
2.5.4. Accuracy Evaluation
2.5.5. Calculation of Aboveground Carbon Stock
2.5.6. Model Transferability
3. Results
3.1. Aboveground Biomass Estimation
3.2. Aboveground Carbon Stock Estimation
3.3. Mapping Large-Scale Sugarcane Aboveground Biomass and Carbon Stock
4. Discussion
4.1. Estimating Aboveground Biomass (AGB) and Carbon Stock
4.2. Large Scale Mapping
4.3. Uncertainty and Limitations
- (i)
- this analysis did not consider the different phenological stages of the sugarcane crop. A better overview of the phenological dynamics, such as variations in height, stem density, and the diameter of the sugarcane crop at different growth stages, could provide valuable insights into the biomass volume prediction at the field level, as shown in a recent study [18];
- (ii)
- the number of training and validation samples considered in the analysis is crucial to improve the accuracy of predictive models;
- (iii)
- other powerful ML/deep learning algorithms can be explored with multiple sensor sources for improving sugarcane AGB and carbon stock estimation across a large region in order to mitigate uncertainties and improve the overall predictive performance of the models.
5. Conclusions
- the RFR predictor models in 2018 and 2021 achieved high accuracy and efficiency with R2 > 0.85 and RMSE < 9.61, respectively;
- high accuracy of the estimated AGB from the RFR models showed the smooth and well-distributed variability of sugarcane AGB within each field;
- the results of the carbon stock map showed an average value of 33.03 t/ha and 43.38 t/ha for the years 2018 and 2021, providing valuable insights for stakeholders and those involved in crop cultivation management;
- the generated maps allow one to calculate the distribution and variations of carbon stock densities across the region for the two based years. This capability enhances our ability to monitor changes in carbon stocks over time, contributing to effective climate change mitigation strategies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Aboveground Biomass |
AOI | Area of Interest |
S1 | Sentinel-1 |
S2 | Sentinel-2 |
KK3 | Khon Kaen 3-Sugarcane Cultivar for the Northeast |
EO | Satellite-based Earth Observation |
GNSS | Global Navigation Satellite System |
SAR | Synthetic Aperture Radar |
MSI | Multi Spectral Instrument |
VIs | Vegetation Indices |
MC | Median Composite |
HVI | Sugarcane Plant Height |
SD | Sugarcane Stalk Density |
Bi | Sugarcane AGB Per Pixel |
RFR | Random Forest Regression |
SVR | Support Vector Regression |
ML | Machine Learning |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
OCSB | Office of The Cane and Sugar Board |
Appendix A
Indices | Formula | Definition | Reference |
---|---|---|---|
Normalized difference vegetation index (NDVI) | NDVI = (B8 − B4)/(B8 + B4) | [54] | |
Green normalized difference vegetation index (GNDVI) | GNDVI = (B8 − B3)/(B8 + B3) | [55] | |
Normalized difference water index (NDWI) | NDWI = (B3 − B8)/(B3 + B8) | [56] | |
Enhanced vegetation index (EVI) | EVI = 2.5 (B8 − B4)/ (B8 + 6 B4 − 7.5 B2) + 1 | [57] | |
Normalized difference infrared index (NDII) | NDII = (B8 − B11)/(B8 + B11) | [58] | |
Soil-adjusted vegetation index (SAVI) | (L+1) | SAVI = (B8 − B4)/(B8 + B4 + L) × (L + 1), L = 0.5 | [59] |
Leaf area index (LAI) | (3.618 × EVI − 0.118) | LAI = (3.618 × EVI − 0.118) | [60] |
Greenness index (GI) | GI = B3/B4 | [61] | |
Moisture stress index (MSI) | MSI = B11/B8 | [62] | |
Ratio vegetation index (RVI) | RVI = B8/B4 | [63] | |
Green ratio vegetation index (GRVI) | GRVI = B8/B3 | [64] | |
Normalized difference red/green redness index (RI) | RI = (B4 − B3)/(B4 + B3) | [65] |
RFR Model | Important Feature |
---|---|
2018 | B08_median_Nov_2018, B8A_median_Nov_2018, NDVI_median_Nov_2018, NDVI_max_Nov_2018, NDVI_median_Oct_2018, GNDVI_median_Nov_2018, GNDVI_median_Oct_2018, B08_median_Nov_2017, NDVI_max_Dec_2017, B08_median_Dec_2017, B05_median_Feb_2018, B12_median_Jan_2018, B04_median_Jan_2018, MSI_median_Nov_2018, GRVI_median_Dec_2017, VV_median_Dec_2017, B06_median_Mar_2018, RI_median_May_2018, LAI_median_May_2018 and VH_median_Jan_2017 |
2021 | B08_median_Nov_2021, B8A_median_Nov_2021, NDVI_median_Nov_2021, NDVI_max_Nov_2021, GNDVI_median_Nov_2021, B07_median_Mar_2021, GNDVI_median_Mar_2021, NDII_median_Feb_2021, B08_median_Nov_2021, B8A_median_Nov_2021, NDVI_median_Nov_2021, NDVI_max_Nov_2021, GNDVI_median_Nov_2021, VH_median_Nov_2021, VH_median_Aug_2021, VV_median_Aug_2021, VV_median_Oct _2020, LAI_median_Apr_2021, B07_median_Mar_2021 and GNDVI_median_Mar_2021 |
References
- Abebe, S.; Minale, A.S.; Teketay, D.; Jayaraman, D.; Long, T.T. Biomass, carbon stock and sequestration potential of Oxytenanthera abyssinica forests in Lower Beles River Basin, Northwestern Ethiopia. Carbon Balance Manag. 2021, 16, 29. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios—A review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Whitmore, A.; Kirk, G.; Rawlins, B. Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Manag. 2015, 31, 62–71. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Postma, J.A.; Lynch, J.P. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann. Bot. 2011, 107, 829–841. [Google Scholar] [CrossRef]
- Taub, D. Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat. Educ. Knowl. 2010, 3, 21. [Google Scholar]
- Shahid, M.; Nayak, A.K.; Puree, C.; Tripathi, R.; Lal, B.; Gautam, P.; Bhattacharyya, P.; Mohanty, S.; Kumar, A.; Panda, B.B. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Tillage Res. 2017, 170, 136–146. [Google Scholar] [CrossRef]
- Tenelli, S.; Bordonal, R.O.; Cherubin, M.R.; Cerri, C.E.P.; Carvalho, J.L.N. Multilocation changes in soil carbon stocks from sugarcane straw removal for bioenergy production in Brazil. Glob. Chang. Biol. Bioenergy 2021, 13, 1099–1111. [Google Scholar] [CrossRef]
- FAO. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/?#data/QCL (accessed on 19 December 2022).
- Sukyai, P.; Yingkamhaeng, N.; Lam, N.T.; Tangsatianpan, V.; Watcharinrat, C.; Vanitjinda, G.; Vanichsriratana, W.; Sriroth, K. Research and development prospects for sugarcane and sugar industry in Thailand. Sugar Tech 2016, 18, 583–587. [Google Scholar] [CrossRef]
- Tukaew, S.; Datta, A.; Shivakoti, G.P.; Jourdain, D. Production practices influenced yield and commercial cane sugar level of contract sugarcane farmers in Thailand. Sugar Tech 2016, 18, 299–308. [Google Scholar] [CrossRef]
- Office of the Cane and Sugar Board. The Annual Report in Sugarcane Plantation Areas in Thailand in 2022/2023; Office of the Cane and Sugar Board (OCSB): Bangkok, Thailand, 2023.
- Lakapunrat, N.; Thapa, G.B. Policies, socioeconomic, institutional and biophysical factors influencing the change from rice to sugarcane in Nong Bua Lamphu province, Thailand. Environ Manag. 2017, 59, 924–938. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Garivait, S. Estimation of reduced air emissions as a result of the implementation of the measure to reduce burned sugarcane in Thailand. Atmosphere 2020, 11, 366. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Kanu, A.S.; Yang, L.; Huang, J.; Wang, F. Evaluation of machine learning models for rice dry biomass estimation and mapping using quad-source optical imagery. GIsci Remote Sens. 2020, 57, 785–796. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Y.; Zhao, G.; Sun, C.; Zhang, F.; He, S. Sugarcane biomass prediction with multi-mode remote sensing data using deep archetypal analysis and integrated learning. Remote Sens. 2022, 14, 4944. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Gao, Y.; Wu, J.; Cheng, R.; Ren, D.; Bao, Q.; Yun, T.; Wu, Z.; Xie, G. Comparison of Different Important Predictors and Models for Estimating Large-Scale Biomass of Rubber Plantations in Hainan Island, China. Remote Sens. 2023, 15, 3447. [Google Scholar] [CrossRef]
- Som-Ard, J.; Atzberger, C.; Izquierdo-Verdiguier, E.; Vuolo, F.; Immitzer, M. Remote sensing applications in sugarcane cultivation: A review. Remote Sens. 2021, 13, 4040. [Google Scholar] [CrossRef]
- Dashpurev, B.; Dorj, M.; Phan, T.N.; Bendix, J.; Lehnert, L.W. Estimating fractional vegetation cover and aboveground biomass for land degradation assessment in eastern Mongolia steppe: Combining ground vegetation data and remote sensing. Int. J. Remote Sens. 2023, 44, 452–468. [Google Scholar] [CrossRef]
- Pei, H.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Identifying Spatial Variation of Carbon Stock in a Warm Temperate Forest in Central Japan Using Sentinel-2 and Digital Elevation Model Data. Remote Sens. 2023, 15, 1997. [Google Scholar] [CrossRef]
- Meng, X.; Xie, S.; Sun, L.; Liu, L.; Han, Y. Evaluation of temporal compositing algorithms for annual land cover classification using Landsat time series data. Int. J. Digit. Earth 2023, 16, 2574–2598. [Google Scholar] [CrossRef]
- Molijn, R.A.; Iannini, L.; Vieira Rocha, J.; Hanssen, R.F. Sugarcane productivity mapping through C-band and L-band SAR and optical satellite imagery. Remote Sens. 2019, 11, 1109. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Du, Q.; Runge, T. Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States. Remote Sens. 2020, 12, 1232. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Askar, A.; Stratoulias, D.; Wicaksono, P. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 2022, 37, 366–376. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Som-ard, J.; Immitzer, M.; Vuolo, F.; Ninsawat, S.; Atzberger, C. Mapping of crop types in 1989, 1999, 2009 and 2019 to assess major land cover trends of the Udon Thani Province, Thailand. Comput. Electron. Agric. 2022, 198, 107083. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Farbo, A.; Novello, V.; Palma, L.d. A fast regression-based approach to map water status of pomegranate orchards with sentinel 2 data. Horticulturae 2022, 8, 759. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Sarvia, F.; Gomarasca, M.A. Supporting insurance strategies in agriculture by remote sensing: A possible approach at regional level. In Proceedings of the Computational Science and Its Applications—ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, 1–4 July 2019; Proceedings, Part IV 19. pp. 186–199. [Google Scholar]
- dos Santos Luciano, A.C.; Picoli, M.C.A.; Rocha, J.V.; Franco, H.C.J.; Sanches, G.M.; Leal, M.R.L.V.; Le Maire, G. Generalized space-time classifiers for monitoring sugarcane areas in Brazil. Remote Sens. Environ. 2018, 215, 438–451. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Z.; Baig, M.H.A.; Wang, Y.; Li, Y.; Chen, Y. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy 2019, 88, 104190. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Xu, W. Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sens. 2021, 13, 1595. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: A case study of the Dabie Mountain Region, China. Remote Sens. 2021, 14, 176. [Google Scholar] [CrossRef]
- Shendryk, Y.; Davy, R.; Thorburn, P. Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning. Field Crops Res. 2021, 260, 107984. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar]
- Xu, C.; Ding, Y.; Zheng, X.; Wang, Y.; Zhang, R.; Zhang, H.; Dai, Z.; Xie, Q. A Comprehensive Comparison of Machine Learning and Feature Selection Methods for Maize Biomass Estimation Using Sentinel-1 SAR, Sentinel-2 Vegetation Indices, and Biophysical Variables. Remote Sens. 2022, 14, 4083. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Dang Nguyen, H.T.; Baghdadi, N.; Courault, D.; Hossard, L.; El Moussawi, I. Estimation of rice height and biomass using multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sens. 2018, 10, 1394. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wang, Z.; Tian, L. High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. Eur. J. Agron. 2023, 149, 126889. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Castellón, A.; Aizpurua, A. Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm. Remote Sens. 2023, 15, 1640. [Google Scholar] [CrossRef]
- Amatayakul, P.; Thewin, C. Agricultural Meteorology to Know for Udon Thani; Meteorology Department: Bangkok, Thailand, 2014. [Google Scholar]
- Kumphawapi District Agricultural Extension Office. Agricultural Information Statistics in Kumphawapi District, Udon Thani Province. Available online: http://kumphawapi.udonthani.doae.go.th/kaset-60.html (accessed on 18 July 2022).
- Sumesh, K.; Ninsawat, S.; Som-ard, J. Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Comput. Electron. Agric. 2021, 180, 105903. [Google Scholar]
- UniStrong. Land Survey & LiDAR. Available online: http://en.unistrong.com/ProductShow.asp?ArticleID=340 (accessed on 15 November 2022).
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. In Proceedings of the International Electronic Conference on Remote Sensing, Online, 22 May–5 June 2019; p. 11. [Google Scholar]
- Mandal, D.; Bhattacharya, A.; Rao, Y.S. Radar Remote Sensing for Crop Biophysical Parameter Estimation; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings of the Proceedings Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Zekoll, V.; Main-Knorn, M.; Alonso, K.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of masking algorithms for sentinel-2 imagery. Remote Sens. 2021, 13, 137. [Google Scholar] [CrossRef]
- Som-ard, J. Rice Security Assessment Using Geo-Spatial Analysis. Int. J. Geoinform. 2020, 16, 21–38. [Google Scholar]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package ‘raster’. R Package 2015, 734, 473. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Serrano, L.; Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Penuelas, J. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Klemas, V.; Smart, R. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina Alterniflora canopies. Photogramm. Eng. Remote Sens 1983, 49, 77–83. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrene, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Vogelmann, J.; Rock, B. Spectral characterization of suspected acid deposition damage in red spruce (Picea Rubens) stands from Vermont. In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, USA, 8–10 April 1985. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.; Hobart, G.; Luther, J.; Hermosilla, T.; Griffiths, P.; Coops, N.; Hall, R.; Hostert, P.; Dyk, A. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Cihlar, J.; Manak, D.; D’Iorio, M. Evaluation of compositing algorithms for AVHRR data over land. IEEE Trans. Geosci. Remote Sens. 1994, 32, 427–437. [Google Scholar] [CrossRef]
- Youkhana, A.H.; Ogoshi, R.M.; Kiniry, J.R.; Meki, M.N.; Nakahata, M.H.; Crow, S.E. Allometric models for predicting aboveground biomass and carbon stock of tropical perennial C4 grasses in Hawaii. Front. Plant Sci. 2017, 8, 650. [Google Scholar] [CrossRef] [PubMed]
- Canata, T.F.; Wei, M.C.F.; Maldaner, L.F.; Molin, J.P. Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sens. 2021, 13, 232. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 18 July 2022).
- Xu, J.-X.; Ma, J.; Tang, Y.-N.; Wu, W.-X.; Shao, J.-H.; Wu, W.-B.; Wei, S.-Y.; Liu, Y.-F.; Wang, Y.-C.; Guo, H.-Q. Estimation of sugarcane yield using a machine learning approach based on uav-lidar data. Remote Sens. 2020, 12, 2823. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of ensemble learning to predict wheat grain yield based on UAV-multispectral reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Office of the Cane and Sugar Board. Harvested Sugarcane 2017–2018 Report; Office of the Cane and Sugar Board (OCSB): Bangkok, Thailand, 2019.
- Watcharapirak, W.; Pattanakiat, S.; Navanugraha, C. The estimation of carbon storages in various growth stages of sugarcane in Si Sat Chanalai district, Sukhothai province, Thailand. Environ. Nat. Resour. J. 2009, 7, 72–81. [Google Scholar]
- Li, Z.; Zan, Q.; Yang, Q.; Zhu, D.; Chen, Y.; Yu, S. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system. Remote Sens. 2019, 11, 1018. [Google Scholar] [CrossRef]
Sensor Data | Monthly | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | ||||||||||||||
Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | Jul | Aug | Sep | Oct | Nov | Dec | |
Sentinel-1 (S1) | ●● | ●●● | ●● | ●●● | ●● | ●● | ●● ● | ●● ●● | ●● ●●● | ●● ●●● | ●● ●●● | ●● ●●●● | ●●●●● | ●● ●● ● | |
Sentinel-2 (S2) 1 | ●● | ● | ●●● | ●●● | ●●●●● | ●● ●● ● | ●● ● | ●● ●● | ● | ● | ● | ●●● | ●● | ●● | |
Sentinel-2 (S2) 2 | ●●● | ●●● | ●●●● | ●●● | ●●●●● | ●● ●● ● | ●● ● | ●● ● | ● | ● | ●●● | ●● | ●●● | ||
Total | 7 | 7 | 9 | 9 | 10 | 12 | 8 | 10 | 5 | 7 | 5 | 7 | 12 | 9 | 5 |
2020 | 2021 | ||||||||||||||
Sentinel-1 (S1) | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●●● | ●●●● ● | ●●●●● | ●●●●● | ●●●●● | ●● ●● ● |
Sentinel-2 (S2) 1 | ● | ●●●● | ●● ●● ●● | ●● ●● ●● | ●● ●● | ●● ●● | ●●●● | ●●● | ●● | ●●● | ● | ●●●● | ● | ||
Sentinel-2 (S2) 2 | ● | ●●●● | ●● ●● ● | ●● ●● ●● | ●●●● | ●●●●● | ●●●● | ● | ●● | ●●●● | ● | ||||
Total | 7 | 13 | 16 | 17 | 13 | 14 | 13 | 9 | 9 | 5 | 8 | 6 | 5 | 13 | 5 |
Predictor Variable | 2018 | 2021 | ||
---|---|---|---|---|
S1 | S2 | S1 | S2 | |
Feature information (all bands) | 30 | 100 | 30 | 90 |
Vegetation indices (VIs) | 30 | 130 | 30 | 117 |
Total (full feature sets) | 60 | 230 | 60 | 207 |
Method | Model Accuracy (10-Fold Cross-Validation) | Map Validation (Validating Dataset) | ||||||
---|---|---|---|---|---|---|---|---|
2018 | 2021 | 2018 | 2021 | |||||
R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | R2 | RMSE (t/ha) | |
RFR | 0.85 | 12.35 | 0.86 | 6.14 | 0.85 | 8.84 | 0.86 | 9.61 |
SVR | 0.84 | 13.19 | 0.76 | 8.29 | 0.81 | 10.53 | 0.73 | 12.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwanlee, S.R.; Pinasu, D.; Som-ard, J.; Borgogno-Mondino, E.; Sarvia, F. Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sens. 2024, 16, 750. https://doi.org/10.3390/rs16050750
Suwanlee SR, Pinasu D, Som-ard J, Borgogno-Mondino E, Sarvia F. Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sensing. 2024; 16(5):750. https://doi.org/10.3390/rs16050750
Chicago/Turabian StyleSuwanlee, Savittri Ratanopad, Dusadee Pinasu, Jaturong Som-ard, Enrico Borgogno-Mondino, and Filippo Sarvia. 2024. "Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms" Remote Sensing 16, no. 5: 750. https://doi.org/10.3390/rs16050750
APA StyleSuwanlee, S. R., Pinasu, D., Som-ard, J., Borgogno-Mondino, E., & Sarvia, F. (2024). Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sensing, 16(5), 750. https://doi.org/10.3390/rs16050750