Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Sentinel-3 Altimetry Data
2.2.2. Water Mask Data
2.2.3. In Situ Data
3. Methods
3.1. Principle of Satellite Altimetry
3.2. Extraction of Water Level Information
3.2.1. Data Quality Grading
3.2.2. Vertical Datum Conversion and Deviation Correction
3.2.3. Calculation of Monthly Water Level
4. Results
4.1. Comparison of Four Different Retracking Algorithms
4.2. Validation of Altimetry Water Level Using In Situ Data
4.3. Monthly Water Level Changes of Lakes and Reservoirs
5. Discussion
5.1. Analysis of Factors Influencing Altimetry Water Level Measurement Accuracy
5.2. Characteristics of Lakes/Reservoirs That Can Be Monitored by Sentinel-3
5.3. Uncertainties and Limitations of This Study
6. Conclusions
- (1)
- Taking the track A103 of Tai Lake as an example, it showed that the OCOG algorithm is more suitable than the other three algorithms (i.e., Ocean, Ice sheet, and Sea ice), for extracting the water level of inland water bodies. By comparing the altimetry-derived water levels with in situ data, it was found that Sentinel-3 has good performance in water level monitoring. The R of all lakes was greater than 0.5, and the RMSE was less than 1 m. Among the eight lakes with in situ data, Tai Lake, Gaoyou Lake, and Luoma Lake had better measurement accuracy, with R > 0.9 and RMSE < 0.1 m.
- (2)
- The variation of monthly water level in the 15 lakes mostly has a certain regularity. The water level may rise slightly several times throughout the year, and the highest water level of the lake mainly occurs during the flood season. The monthly variation in water level at Shijiu Lake is the most pronounced. In 2020, frequent rainfall in the Tai Lake basin led to significant regional floods, causing a rapid rise in water levels across many lakes in July 2020.
- (3)
- Internal water level differences, terrain features, and the area and shape of the lake may influence the accuracy of altimetry water levels. The geographical location and distribution of lakes determine whether altimeter products can cover them. Specifically, the larger the lake area is, the greater the number of altimetry points within the water surface is, resulting in higher values of R and smaller values of RMSE for the altimeter water level.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X. Impacts of Water Resources Management on Land Water Storage in the Lower Lancang River Basin: Insights from Multi-Mission Earth Observations. Remote Sens. 2023, 15, 1747. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Han, P.; Zhao, F.; Wada, Y. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef]
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Liu, Z.; Kittel, C.M.M.; Yao, Z.; Druce, D.; Wang, R.; Tottrup, C.; Liu, J.; Jiang, H.; et al. Flow regime changes in the Lancang River, revealed by integrated modeling with multiple Earth observation datasets. Sci. Total Environ. 2023, 862, 160656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Maheu, C. Water level fluctuations in the Plata Basin (South America) from Topex/Poseidon Satellite Altimetry. Geophys. Res. Lett. 2003, 30, 1143. [Google Scholar] [CrossRef]
- Seyler, F.; Calmant, S.; Silva, J.S.d.; Moreira, D.M.; Mercier, F.; Shum, C.K. From TOPEX/Poseidon to Jason-2/OSTM in the Amazon basin. Adv. Space Res. 2013, 51, 1542–1550. [Google Scholar] [CrossRef]
- Birkett, C.M.; Beckley, B. Investigating the performance of the Jason-2/OSTM radar altimeter over lakes and reservoirs. Mar. Geod. 2010, 33, 204–238. [Google Scholar] [CrossRef]
- Sridevi, T.; Sharma, R.; Mehra, P.; Prasad, K.V.S.R. Estimating discharge from the Godavari River using ENVISAT, Jason-2, and SARAL/AltiKa radar altimeters. Geophys. Res. Lett. 2016, 7, 348–357. [Google Scholar] [CrossRef]
- Nielsen, K.; Stenseng, L.; Andersen, O.B.; Villadsen, H.; Knudsen, P. Validation of CryoSat-2 SAR mode based lake levels. Remote Sens. Environ. 2015, 171, 162–170. [Google Scholar] [CrossRef]
- Berry, P.A.M. Global inland water monitoring from multi-mission altimetry. Geophys. Res. Lett. 2005, 32, 22814. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Zhang, W.; Wang, X.H.; Sun, J.; Feng, X.; Sun, Y. Increasing Water Levels of Global Lakes Between 2003 and 2009. IEEE Geosci. Remote Sens. Lett. 2020, 17, 187–191. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Cai, X.; Huang, H.; Wang, L. On the capacity of ICESat-2 laser altimetry for river level retrieval: An investigation in the Ohio River basin. J. Hydrol. 2023, 626, 130277. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, H.; Ma, Y.; Yang, J.; Liu, X.; Wang, X. Global Estimation and Assessment of Monthly Lake/Reservoir Water Level Changes Using ICESat-2 ATL13 Products. Remote Sens. 2021, 13, 2744. [Google Scholar] [CrossRef]
- Qi, L.; Qiong, L.; Jiahua, W.; Minglei, H.; Hongwei, X. Research progress of water level extraction methods based on satellite altimeter. South—North Water Transf. Water Sci. Technol. 2021, 19, 281–292. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Luo, S.; Ke, L.; Liu, K.; Zhu, J. Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. J. Hydrol. 2022, 604, 127257. [Google Scholar] [CrossRef]
- Kittel, C.M.M.; Jiang, L.; Tøttrup, C.; Bauer-Gottwein, P. Sentinel-3 radar altimetry for river monitoring—A catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B. Hydrol. Earth Syst. Sci. 2021, 25, 333–357. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Femenias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Nielsen, K.; Andersen, O.B.; Ranndal, H. Validation of Sentinel-3A Based Lake Level over US and Canada. Remote Sens. 2020, 12, 2835. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Xu, M.; Yu, B.; Hinkel, K.M.; Huang, Y.; Yu, B. Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sens. Environ. 2020, 239, 111643. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Yao, Z. On the Performance of Sentinel-3 Altimetry over High Mountain and Cascade Reservoirs Basins: Case of the Lancang and Nu River Basins. Remote Sens. 2023, 15, 1769. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Kittel, C.M.M.; Yao, Z.; Nielsen, K.; Liu, Z.; Wang, R.; Liu, J.; Andersen, O.B.; Bauer-Gottwein, P. On the Performance of Sentinel-3 Altimetry Over New Reservoirs: Approaches to Determine Onboard A Priori Elevation. Geophys. Res. Lett. 2020, 47, 1769. [Google Scholar] [CrossRef]
- Shen, G.; Fu, W. Study on Poyang Lake Hydrologic Regime Using Sentinel-1/3 Data. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6197–6200. [Google Scholar]
- Hong, C. Lake management and protection practice in Jiangsu Province and discussion on lake protection plan compilation. Yangtze River 2014, 45, 48–51. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Halicki, M.; Niedzielski, T. The accuracy of the Sentinel-3A altimetry over Polish rivers. J. Hydrol. 2022, 606, 127355. [Google Scholar] [CrossRef]
- Hydrology Bureau of Anhui Province; Hydrology and Water Resources Bureau of Henan Province; Jiangsu Province Hydrology and Water Resources Investigation Bureau. Hydrological Data of the Huaihe River Basin, the Middle Reaches of the Huaihe River (Guohe, Hung-tse Lake Water System); Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 3. [Google Scholar]
- Jiangsu Province Hydrology and Water Resources Investigation Bureau; Hydrology Bureau of Anhui Province. Hydrological Data of the Huaihe River Basin, the Lower Reaches of the Huai River (Below Hung-tse Lake); Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 4. [Google Scholar]
- Hydrology Bureau of Anhui Province; Jiangsu Province Hydrology and Water Resources Investigation Bureau; Bureau of Hydrology (Information Center), Huaihe River Commission. Hydrological Data of the Huaihe River Basin, the Yihe and Shuhe River Systems and Coastal Small Rivers; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 5. [Google Scholar]
- Hydrology Bureau of Anhui Province; Jiangsu Province Hydrology and Water Resources Investigation Bureau. Hydrological Data of the Yangtze River Basin, the Main Stream Area of the Lower Reaches of the Yangtze River (Chaohu Lake, Qingyi River, Yangjiang River, Chuhe River, and Qinhuai River System); Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 7. [Google Scholar]
- Hydrology Bureau of Zhejiang Province. Hydrological Data of the Yangtze River Basin, the Tai Lake District (Tiaoxi and Nanxi Water Systems); Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 19. [Google Scholar]
- Hydrological Bureau of Shangdong Province; Shanghai Hydrology Administration; Hydrology and Water Resources Monitoring Center of Tai Lake Basin. Hydrological Data of the Yangtze River Basin, the Tai Lake District (Tai Lake Water System, Huangpu River Water System, Hangjiahu District Water System); Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2020; Volume 20. [Google Scholar]
- Medina, C.E.; Gomez-Enri, J.; Alonso, J.J.; Villares, P. Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in-situ measurements in a subtropical waterbody: Lake Izabal (Guatemala). Remote Sens. Environ. 2008, 112, 3604–3617. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Mercier, F.; Cazenave, A.; Maheu, C. Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean–atmosphere interactions over the Indian Ocean. Glob. Planet. Chang. 2002, 32, 141–163. [Google Scholar] [CrossRef]
- WEN, J.; ZHAO, H.; JIANG, Y.; Deqing, C.; JI, G. Research on the quality screening method for satellite altimetry data—take Jason-3 data and Hongze Lake as an example. South--North Water Transf. Water Sci. Technol. 2018, 16, 194–200. [Google Scholar] [CrossRef]
- Zhai, Z.; Wei, Z.; Wu, F.; Ren, H. Computation of Vertical Deviation of Chinese Height Datum from Geoid by Using EGM2008 Model. J. Geod. Geodyn. 2011, 31, 116–118. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.G.; Griffiths, H. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS’86 Symposium, Zurich, Switzerland, 8–11 September 1986; pp. 1339–1344. [Google Scholar]
- Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef]
Lake Names | Water System | Lake Area (km2) | Average Depth (m) | Track | Number of Tracks | Transit Time (UTC + 8:00) |
---|---|---|---|---|---|---|
Baoying Lake * | Huaihe River | 40.28 | 1.13 | B052 | 41 | 21:39–21:40 |
Dazong Lake | Huaihe River | 32.25 | 1 | A052 | 68 | 21:38 |
Gaoyou Lake * | Huaihe River | 655.942 | 7.9 | B046 | 36 | 10:24 |
B052 | 41 | 21:39–21:40 | ||||
Hung-tse Lake * | Huaihe River | 1786.75 | 9.8 | A380 | 68 | 21:42 |
B374 | 40 | 10:28 | ||||
B380 | 41 | 21:43–21:44 | ||||
Wugong Lake | Huaihe River | 15.33 | 1 | A052 | 68 | 21:38 |
Cheng Lake | Tai Lake | 42.26 | 1.9 | B109 | 40 | 21:35 |
Ge Lake * | Tai Lake | 196.07 | 2.9 | B052 | 41 | 21:39 |
Tai Lake * | Tai Lake | 2341.04 | 2.2 | A052 | 68 | 21:37 |
A103 | 66 | 10:19 | ||||
Yangcheng Lake | Tai Lake | 124.24 | 1.7 | B109 | 40 | 21:35–21:36 |
B160 | 37 | 10:17–10:18 | ||||
Yuandang Lake | Tai Lake | 12.93 | 1.7 | B109 | 24 | 21:35 |
Gucheng Lake * | Yangtze River | 30.29 | 1 | B046 | 36 | 10:25 |
B380 | 41 | 21:43 | ||||
Shijiu Lake * | Yangtze River | 212.16 | 3.7 | B046 | 33 | 10:25 |
B380 | 41 | 21:43 | ||||
Luoma Lake * | YiShuSi River | 296.662 | 3.9 | B380 | 41 | 21:43–21:44 |
Weishan Lake | YiShuSi River | 690.59 | 3 | B260 | 38 | 10:35 |
B323 | 41 | 21:47–21:48 | ||||
Daxi Reservoir | Tai Lake | 11.29 | 0.9 | A380 | 67 | 21:41 |
Shilianghe Reservoir | YiShuSi River | 52.22 | 7.7 | B052 | 41 | 21:40 |
Lake | Track | RMSE (m) | R | Number of Invalid Observations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OCOG | Ocean | Ice Sheet | Sea Ice | OCOG | Ocean | Ice Sheet | Sea Ice | OCOG | Ocean | Ice Sheet | Sea Ice | ||
Tai | A052 | 0.31 | 0.52 | 0.45 | 0.62 | 0.963 | 0.856 | 0.877 | 0.787 | 0 | 0 | 0 | 0 |
A103 | 0.23 | 0.52 | 0.43 | 0.64 | 0.977 | 0.975 | 0.979 | 0.864 | 0 | 0 | 0 | 0 | |
Hung-tse | A380 | 0.75 | 1.21 | 0.92 | 1.99 | 0.838 | 0.362 | 0.592 | 0.328 | 0 | 0 | 0 | 2 |
Ge | B052 | 0.53 | 0.83 | 0.90 | 0.48 | 0.716 | 0.671 | 0.595 | 0.759 | 0 | 0 | 0 | 2 |
Gucheng | B046 | 1.16 | 3.63 | 0.42 | 1.18 | 0.688 | 0.429 | 0.954 | 0.529 | 2 | 2 | 14 | 4 |
Shijiu | B380 | 0.54 | 0.59 | 0.48 | 0.52 | 0.996 | 0.996 | 0.990 | 0.991 | 0 | 0 | 3 | 2 |
Luoma | B380 | 0.30 | 0.21 | 0.26 | 0.23 | 0.987 | 0.966 | 0.907 | 0.932 | 0 | 0 | 0 | 0 |
Gaoyou | B052 | 0.45 | 0.27 | 0.14 | 0.20 | 0.996 | 0.995 | 0.994 | 0.985 | 0 | 0 | 0 | 0 |
Baoying | B052 | 0.56 | 0.36 | 0.25 | 0.30 | 0.865 | 0.876 | 0.912 | 0.877 | 9 | 9 | 9 | 9 |
Total | 0.56 | 0.88 | 0.58 | 0.99 | 0.998 | 0.994 | 0.998 | 0.992 | 11 | 11 | 26 | 17 |
Lake Name | Baoying | Gaoyou | Ge | Gucheng | Hung-tse | Luoma | Tai | Shijiu | |
---|---|---|---|---|---|---|---|---|---|
Before deviation correction | R | 0.865 | 0.995 | 0.716 | 0.805 | 0.971 | 0.987 | 0.961 | 0.929 |
RMSE (m) | 0.56 | 0.40 | 0.53 | 0.84 | 0.50 | 0.30 | 0.26 | 0.99 | |
After deviation correction | R | 0.865 | 0.995 | 0.716 | 0.805 | 0.971 | 0.987 | 0.961 | 0.929 |
RMSE (m) | 0.16 | 0.06 | 0.31 | 0.66 | 0.15 | 0.09 | 0.07 | 0.77 |
Names | Track | Number of Altimetry Points | R | RMSE (m) |
---|---|---|---|---|
Tai Lake | A052 | 120 | 0.969 | 0.31 |
A103 | 136 | 0.980 | 0.23 | |
Hung-tse Lake | A380 | 61 | 0.756 | 0.75 |
B374 | 178 | 0.992 | 0.40 | |
B380 | 65 | 0.856 | 0.42 | |
Gaoyou Lake | B046 | 88 | 0.985 | 0.41 |
B052 | 73 | 0.990 | 0.45 | |
Luoma Lake | B380 | 43 | 0.986 | 0.30 |
Shijiu Lake | B046 | 14 | 0.856 | 1.39 |
B380 | 28 | 0.996 | 0.54 | |
Baoying Lake | B052 | 4 | 0.865 | 0.56 |
Gucheng Lake | B046 | 21 | 0.688 | 1.16 |
B380 | 14 | 0.993 | 0.39 | |
Ge Lake | B052 | 35 | 0.716 | 0.53 |
Area Categories | >1000 km² | >100 km² | >10 km² | >1 km² | >0.1 km² | |
---|---|---|---|---|---|---|
Number of Lakes in HydroLAKES | Global | 178 | 1708 | 16,689 | 185,181 | 1,427,688 |
Jiangsu | 2 | 9 | 29 | 249 | 1190 | |
Number of Lakes covered by Sentinel-3A | Global | 173 | 1237 | 5879 | 23,348 | 64,686 |
Jiangsu | 2 | 3 | 6 | 15 | 25 | |
Number of Lakes covered by Sentinel-3B | Global | 171 | 1220 | 5766 | 23,102 | 64,644 |
Jiangsu | 1 | 6 | 12 | 32 | 52 | |
Number of Lakes covered by Sentinel-3 | Global | 178 | 1549 | 9550 | 43,097 | 125,032 |
Jiangsu | 2 | 8 | 17 | 46 | 76 | |
Coverage rate by Sentinel-3 | Global | 100% | 90.69% | 57.22% | 23.27% | 8.76% |
Jiangsu | 100% | 88.89% | 58.62% | 18.47% | 6.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xia, M.; Ferreira, V.G.; Wang, D.; Liu, C. Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data. Remote Sens. 2024, 16, 808. https://doi.org/10.3390/rs16050808
Xu J, Xia M, Ferreira VG, Wang D, Liu C. Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data. Remote Sensing. 2024; 16(5):808. https://doi.org/10.3390/rs16050808
Chicago/Turabian StyleXu, Jia, Min Xia, Vagner G. Ferreira, Dongmei Wang, and Chongbin Liu. 2024. "Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data" Remote Sensing 16, no. 5: 808. https://doi.org/10.3390/rs16050808
APA StyleXu, J., Xia, M., Ferreira, V. G., Wang, D., & Liu, C. (2024). Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data. Remote Sensing, 16(5), 808. https://doi.org/10.3390/rs16050808