A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Tropical Clouds
3.2. Subtropical Clouds
3.3. Ekman Spirals in the PBL Stereo Winds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shepherd, T.G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar] [CrossRef]
- Whitehead, V.S.; Browne, I.D.; Garcia, J.G. Cloud height contouring from Apollo 6 photography. Bull. Amer. Meteor. Soc. 1969, 50, 522–528. [Google Scholar] [CrossRef]
- Minzner, R.A.; Shenk, W.E.; Teagle, R.D.; Steranka, J. Stereographic cloud heights from imagery of SMS/GOES satellites. Geophys. Res. Lett. 1978, 5, 21–24. [Google Scholar] [CrossRef]
- Hasler, A.F. Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc. 1981, 62, 194–212. [Google Scholar] [CrossRef]
- Takashima, T.; Takayama, Y.; Matsuura, K.; Naito, K. Cloud Height Determination By Satellite Stereography. Pap. Meteorol. Geophys. 1982, 33, 65–78. [Google Scholar] [CrossRef]
- Lorenz, D. Stereoscopic imaging from polar orbit and synthetic stereo imaging. Adv. Space Res. 1983, 2, 133–136. [Google Scholar] [CrossRef]
- Fujita, T.T.; Dodge, J.C. Applications of stereoscopic height computations from dual geosynchronous satellite data/joint NASA–Japan stereo project. Adv. Space Res. 1983, 2, 153–160. [Google Scholar] [CrossRef]
- Mack, R.; Hasler, A.F.; Rodgers, E.B. Stereoscopic observations of hurricanes and tornadic thunderstorms from geosynchronous satellites. Adv. Space Res. 1983, 2, 143–151. [Google Scholar] [CrossRef]
- Lancaster, R.S.; Spinhirne, J.D.; Manizade, K.F. Combined infrared stereo and laser ranging cloud measurements from shuttle mission STS–85. J. Atmos. Ocean. Technol. 2003, 20, 67–78. [Google Scholar] [CrossRef]
- Frey, R.A.; Baum, B.A.; Menzel, W.P.; Ackerman, S.A.; Moeller, C.C.; Spinhirne, J.D. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res. Atmos. 1999, 104, 24547–24555. [Google Scholar] [CrossRef]
- Carr, J.L.; Wu, D.L.; Kelly, M.A.; Gong, J. MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds. Remote Sens. 2018, 10, 1885. [Google Scholar] [CrossRef]
- Carr, J.L.; Wu, D.L.; Wolfe, R.E.; Madani, H.; Lin, G.G.; Tan, B. Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES. Remote Sens. 2019, 11, 2100. [Google Scholar] [CrossRef]
- Carr, J.L.; Wu, D.L.; Daniels, J.; Friberg, M.D.; Bresky, W.; Madani, H. GEO–GEO Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring. Remote Sens. 2020, 12, 3779. [Google Scholar] [CrossRef]
- Carr, J.L.; Horváth, Á.; Wu, D.L.; Friberg, M.D. Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha’apai eruption of 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL098131. [Google Scholar] [CrossRef]
- Carr, J.L.; Wu, D.L.; Friberg, M.D.; Summers, T.C. Multi-LEO Satellite Stereo Winds. Remote Sens. 2023, 15, 2154. [Google Scholar] [CrossRef]
- Kelly, G.; Thepaut, J.-N.; Buizza, R.; Cardinali, C. The value of observations. I: Data denial experiments for the Atlantic and Pacific. Quart. J. Roy. Meteor. Soc. 2007, 133, 1803–1815. [Google Scholar]
- Gelaro, R.; Langland, R.H.; Pellerin, S.; Todling, R. The THORPEX observation impact inter-comparison experiment. Mon. Weather Rev. 2010, 138, 4009–4025. [Google Scholar] [CrossRef]
- Chapel, J.; Stancliffe, D.; Bevacqua, T.; Winkler, S.; Clapp, B.; Rood, T.; Gaylor, D.; Freesland, D.; Krimchansky, A. Guidance, navigation, and control performance for the GOES-R spacecraft. CEAS Space J. 2015, 7, 87–104. [Google Scholar] [CrossRef]
- Tan, B.; Dellomo, J.J.; Folley, C.N.; Grycewicz, T.J.; Houchin, S.; Isaacson, P.J.; Johnson, P.D.; Porter, B.C.; Reth, A.D.; Thiyanaratnam, P.; et al. GOES-R series image navigation and registration performance assessment tool set. J. Appl. Remote Sens. 2020, 14, 032405. [Google Scholar] [CrossRef]
- Stone, R.E.; Pauley, P.; Christophersen, H.; Reeves, J. Evaluation of Dual Geostationary Stereo Winds in NAVGEM. In Proceedings of the 16th International Winds Workshop (IWW16), Montréal, QU, Canada, 8–12 May 2023. [Google Scholar]
- Horváth, Á.; Bresky, W.; Daniels, J.; Vogelzang, J.; Stoffelen, A.; Carr, J.L.; Wu, D.L. Evolution of an atmospheric Kármán vortex street from high-resolution satellite winds: Guadalupe Island case study. J. Geophys. Res. Atmos. 2020, 125, e2019JD032121. [Google Scholar] [CrossRef]
- Carr, J.L.; Daniels, J.; Wu, D.; Bresky, W.; Madani, H.; Friberg, M.; Summers, T. Advances in Stereo Winds. In Proceedings of the 16th International Winds Workshop, Montréal, QU, Canada, 8–12 May 2023. [Google Scholar]
- Carr, J.L.; Daniels, J.; Wu, D.L.; Bresky, W.; Tan, B.A. Demonstration of Three-Satellite Stereo Winds. Remote Sens. 2022, 14, 5290. [Google Scholar] [CrossRef]
- Wu, D.L.; Ackerman, S.A.; Davies, R.; Diner, D.J.; Garay, M.J.; Kahn, B.H.; Maddux, B.C.; Moroney, C.M.; Stephens, G.L.; Veefkind, J.P.; et al. Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Taylor, J.R.; Randel, W.J.; Jensen, E.J. Cirrus cloud-temperature interactions in the tropical tropopause layer: A case study. Atmos. Chem. Phys. 2011, 11, 10085–10095. [Google Scholar] [CrossRef]
- Wang, T.; Wu, D.L.; Gong, J.; Tsai, V. Tropopause laminar cirrus and its role in the lower stratosphere total water budget. J. Geophys. Res. Atmos. 2019, 124, 7034–7052. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Academic Press: Cambridge, MA, USA, 2006; Volume 92. [Google Scholar]
- Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal characteristics of tropical convection. J. Clim. 1999, 12, 2397–2418. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus clouds. Review paper. Mon. Weather Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Ekman, V.W. On the influence of the Earth’s rotation on ocean currents. Arch. Math. Astron. Phys. 1905, 2, 1–52. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.L.; Carr, J.L.; Friberg, M.D.; Summers, T.C.; Lee, J.N.; Horváth, Á. A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific. Remote Sens. 2024, 16, 1133. https://doi.org/10.3390/rs16071133
Wu DL, Carr JL, Friberg MD, Summers TC, Lee JN, Horváth Á. A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific. Remote Sensing. 2024; 16(7):1133. https://doi.org/10.3390/rs16071133
Chicago/Turabian StyleWu, Dong L., James L. Carr, Mariel D. Friberg, Tyler C. Summers, Jae N. Lee, and Ákos Horváth. 2024. "A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific" Remote Sensing 16, no. 7: 1133. https://doi.org/10.3390/rs16071133
APA StyleWu, D. L., Carr, J. L., Friberg, M. D., Summers, T. C., Lee, J. N., & Horváth, Á. (2024). A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific. Remote Sensing, 16(7), 1133. https://doi.org/10.3390/rs16071133