Sentinel-2 Reference Fire Perimeters for the Assessment of Burned Area Products over Latin America and the Caribbean for the Year 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Sentinel-2
2.1.2. Ecoregions 2017 © Resolve
2.1.3. MCD64A1 v061
2.1.4. FireCCI51 v5.1
2.1.5. PlanetScope
2.2. Sampling Design
2.2.1. Identification of Sampling Units
2.2.2. Biome and Fire Activity Stratification
2.2.3. Sample Size Allocation
2.3. Extraction of Reference Fire Perimeters
2.3.1. Selection of Sentinel-2 Images
2.3.2. Extraction of Short Unit Fire Perimeters
2.3.3. Conversion of Fire Perimeters from Short to Long Unit
2.4. Sentinel-2 and PlanetScope Reference Fire Perimeters Comparison
2.4.1. Selection of the Sentinel-2—PlanetScope Comparison Sites
2.4.2. Selection, Processing, and Download of PlanetScope Imagery
2.4.3. Extraction of PlanetScope Fire Perimeters
2.4.4. Accuracy Metrics from the S2RP–PlanetScope Comparison
2.5. Accuracy Assesment of Global BA Products
3. Results
3.1. Sampling
3.2. Sentinel-2 Reference Fire Perimeters
3.3. Comparison with PlanetScope Reference Perimeters
3.4. Accuracy Estimates for MCD64A1 and FireCCI51
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A Spatio-Temporal Active-Fire Clustering Approach for Global Burned Area Mapping at 250 m from MODIS Data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Otón, G.; Ramo, R.; Lizundia-Loiola, J.; Chuvieco, E. Global Detection of Long-Term (1982–2017) Burned Area with AVHRR-LTDR Data. Remote Sens. 2019, 11, 2079. [Google Scholar] [CrossRef]
- Otón, G.; Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. Development of a Consistent Global Long-Term Burned Area Product (1982–2018) Based on AVHRR-LTDR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102473. [Google Scholar] [CrossRef]
- Alonso-Canas, I.; Chuvieco, E. Global Burned Area Mapping from ENVISAT-MERIS and MODIS Active Fire Data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A New Global Burned Area Product for Climate Assessment of Fire Impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef]
- Potter, C. Recovery Rates of Wetland Vegetation Greenness in Severely Burned Ecosystems of Alaska Derived from Satellite Image Analysis. Remote Sens. 2018, 10, 1456. [Google Scholar] [CrossRef]
- Van Wees, D.; Van Der Werf, G.R.; Randerson, J.T.; Rogers, B.M.; Chen, Y.; Veraverbeke, S.; Giglio, L.; Morton, D.C. Global Biomass Burning Fuel Consumption and Emissions at 500 m Spatial Resolution Based on the Global Fire Emissions Database (GFED). Geosci. Model. Dev. 2022, 15, 8411–8437. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, A.; Tigabu, M.; Wang, G.; Zhang, Z.; Zhu, H.; Guo, F. Investigating Drought Events and Their Consequences in Wildfires: An Application in China. Fire 2023, 6, 223. [Google Scholar] [CrossRef]
- Bedair, H.; Alghariani, M.S.; Omar, E.; Anibaba, Q.A.; Remon, M.; Bornman, C.; Kiboi, S.K.; Rady, H.A.; Salifu, A.-M.A.; Ghosh, S.; et al. Global Warming Status in the African Continent: Sources, Challenges, Policies, and Future Direction. Int. J. Environ. Res. 2023, 17, 45. [Google Scholar] [CrossRef]
- Franquesa, M.; Lizundia-Loiola, J.; Stehman, S.V.; Chuvieco, E. Using Long Temporal Reference Units to Assess the Spatial Accuracy of Global Satellite-Derived Burned Area Products. Remote Sens. Environ. 2022, 269, 112823. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O. International Global Burned Area Satellite Product Validation Protocol Part I-Production and Standardization of Validation Reference Data (to Be Followed by Part II-Accuracy Reporting); Committee on Earth Observation Satellites: College Park, MD, USA, 2009. [Google Scholar]
- Stroppiana, D.; Sali, M.; Busetto, L.; Boschetti, M.; Ranghetti, L.; Franquesa, M.; Pettinari, M.L.; Chuvieco, E. Sentinel-2 Sampling Design and Reference Fire Perimeters to Assess Accuracy of Burned Area Products over Sub-Saharan Africa for the Year 2019. ISPRS J. Photogramm. Remote Sens. 2022, 191, 223–234. [Google Scholar] [CrossRef]
- Padilla, M.; Wheeler, J.; Tansey, K. ESA Climate Change Initiative-Fire_cci D4.1.1 Product Validation Report, Version 2.1. 2018. Available online: https://climate.esa.int/media/documents/Fire_cci_D4.1.1_PVR_v2.1.pdf (accessed on 25 January 2024).
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global Validation of the Collection 6 MODIS Burned Area Product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the Accuracy of MODIS MCD64A1 C6 and FireCCI51 Burned Area Products in Mediterranean Ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Franquesa, M.; Vanderhoof, M.K.; Stavrakoudis, D.; Gitas, I.Z.; Roteta, E.; Padilla, M.; Chuvieco, E. Development of a Standard Database of Reference Sites for Validating Global Burned Area Products. Earth Syst. Sci. Data 2020, 12, 3229–3246. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 Global Burned Area Product Using Stratified Random Sampling. Remote Sens. Environ. 2014, 144, 187–196. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the Accuracies of Remote Sensing Global Burned Area Products Using Stratified Random Sampling and Estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef]
- Padilla, M.; Olofsson, P.; Stehman, S.V.; Tansey, K.; Chuvieco, E. Stratification and Sample Allocation for Reference Burned Area Data. Remote Sens. Environ. 2017, 203, 240–255. [Google Scholar] [CrossRef]
- Chuvieco, E.; Lizundia-Loiola, J.; Lucrecia Pettinari, M.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and Analysis of a New Global Burned Area Product Based on MODIS 250 m Reflectance Bands and Thermal Anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 2. TimeSync—Tools for Calibration and Validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Gallego Pinilla, F.J. Stratified Sampling of Satellite Images with a Systematic Grid of Points. ISPRS J. Photogramm. Remote Sens. 2005, 59, 369–376. [Google Scholar] [CrossRef]
- Gonzalez-Ibarzabal, J.; Bastarrika, A.; Franquesa Fuentetaja, M.; Rodriguez-Montellano, A. RP_LAC_2019_S2: Reference Fire Perimeters Obtained from Sentinel-2 Imagery over Latin America and Caribbean for the Year 2019. e-cienciaDatos, V2. Available online: https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/GZU7II (accessed on 10 January 2024).
- European Space Agency Sentinel Online: Sentinel-2. Available online: https://sentinels.copernicus.eu/web/sentinel/copernicus/sentinel-2 (accessed on 15 January 2024).
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Planet PlanetScope Product Specifications. 2023. Available online: https://assets.planet.com/docs/Planet_PSScene_Imagery_Product_Spec_letter_screen.pdf (accessed on 10 January 2024).
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using Planetscope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Boschetti, L.; Stehman, S.V.; Roy, D.P. A Stratified Random Sampling Design in Space and Time for Regional to Global Scale Burned Area Product Validation. Remote Sens. Environ. 2016, 186, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Roteta, E.; Bastarrika, A.; Franquesa, M.; Chuvieco, E. Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine. Remote Sens. 2021, 13, 816. [Google Scholar] [CrossRef]
- Melchiorre, A.; Boschetti, L. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sens. 2018, 10, 750. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Coffelt, J.L.; Livingston, R.K. Second U.S. Geological Survey Wildland Fire Workshop: Los Alamos, New Mexico, October 31–November 3, 2000; U.S. Geological Survey: Denver, CO, USA, 2002. [CrossRef]
- USGS Landsat Normalized Burn Ratio 2. Available online: https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio-2 (accessed on 26 January 2024).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; Volume 1. Secttion A. [Google Scholar]
- Planet Labs PBC Developers Planet Orders API Tools. Available online: https://developers.planet.com/apis/orders/tools/ (accessed on 26 January 2024).
- Kington, J.; Collison, A. Scene Level Normalization and Harmonization of Planet Dove Imagery. 2022. Available online: https://assets.planet.com/docs/scene_level_normalization_of_planet_dove_imagery.pdf (accessed on 20 December 2023).
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Filipponi, F. Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires. Remote Sens. 2019, 11, 622. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping Burned Areas Using Dense Time-Series of Landsat Data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef]
- Vetrita, Y.; Cochrane, M.A.; Suwarsono; Priyatna, M.; Sukowati, K.A.D.; Khomarudin, M.R. Evaluating Accuracy of Four MODIS-Derived Burned Area Products for Tropical Peatland and Non-Peatland Fires. Environ. Res. Lett. 2021, 16, 035015. [Google Scholar] [CrossRef]
- Jiao, M.; Quan, X.W.; Yao, J.S. Evaluation of Four Satellite-Derived Fire Products in the Fire-Prone, Cloudy, and Mountainous Area Over Subtropical China. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6513405. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Libonati, R.; Rodrigues, J.A.; Pereira, J.M.C. A Comprehensive Characterization of MODIS Daily Burned Area Mapping Accuracy across Fire Sizes in Tropical Savannas. Remote Sens. Environ. 2021, 252, 112115. [Google Scholar] [CrossRef]
- Hall, J.V.; Argueta, F.; Giglio, L. Validation of MCD64A1 and FireCCI51 Cropland Burned Area Mapping in Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102443. [Google Scholar] [CrossRef]
Reference Class | Total | |||
---|---|---|---|---|
Burned | Unburned | |||
Product Class | Burned | |||
Unburned | ||||
Total |
Accuracy Metric | Formula |
---|---|
Commission error | |
Omission error | |
Dice Coefficient | |
Relative Bias |
High Fire Stratum | Low Fire Stratum | Total | ||||
---|---|---|---|---|---|---|
Biome Stratum | Nh | nh | Nh | nh | Nh | nh |
Tropical Forest | 141 | 10 | 564 | 14 | 705 | 24 |
Tropical Savanna | 54 | 6 | 213 | 10 | 267 | 16 |
Temperate Savanna | 38 | 2 | 153 | 2 | 191 | 4 |
Deserts & Xeric Shrublands | 17 | 2 | 67 | 2 | 84 | 4 |
Temperate Forest | 6 | 2 | 25 | 2 | 31 | 4 |
Mediterranean | 3 | 2 | 11 | 2 | 14 | 4 |
Total | 259 | 24 | 1033 | 32 | 1292 | 56 |
Site | S2RP Tile | DC [%] | Ce [%] | Oe [%] | relB [%] | Biome | DC [%] | Ce [%] | Oe [%] | relB [%] |
---|---|---|---|---|---|---|---|---|---|---|
1 | 22LEQ | 96.8 | 5.5 | 0.8 | 5.0 | Tropical Forest | 94.8 | 7.8 | 2.5 | 5.8 |
2 | 20LMK | 90.8 | 14.5 | 3.1 | 13.3 | |||||
3 | 21JWM | 92.9 | 7.7 | 6.6 | 1.2 | |||||
4 | 22LDL | 97.3 | 4.1 | 1.3 | 2.9 | Tropical Savanna | 95.6 | 6.4 | 2.4 | 4.3 |
5 | 19PGK | 92.3 | 10.1 | 5.1 | 5.5 | |||||
6 | 19NEJ | 94.6 | 8.9 | 1.5 | 8.1 | |||||
7 | 20HLB | 97.7 | 2.8 | 1.8 | 1.0 | Temperate Savanna | 97.7 | 2.8 | 1.8 | 1.0 |
8 | 11SPR | 67.4 | 44.8 | 13.6 | 56.4 | Deserts & Xeric Shrublands | 67.4 | 44.8 | 13.6 | 56.4 |
9 | 19HBT | 89.3 | 5.5 | 15.4 | −10.5 | Temperate Forest | 89.3 | 5.5 | 15.4 | −10.5 |
10 | 19HBV | 89.8 | 13.7 | 6.3 | 8.6 | Mediterranean | 89.8 | 13.7 | 6.3 | 8.6 |
TOTAL | 93.9 | 8.4 | 3.8 | 5.0 |
Product | ||||||||
---|---|---|---|---|---|---|---|---|
FIRECCI51 | MCD64A1 | |||||||
Biome | DC [%] | Ce [%] | Oe [%] | relB [%] | DC [%] | Ce [%] | Oe [%] | relB [%] |
Tropical Forest | 39.1 (10.8) | 30.2 (5.9) | 72.8 (9.9) | −61.1 (12.2) | 38.9 (8.3) | 35.2 (7.1) | 72.2 (7.3) | −57.1 (7.5) |
Tropical Savanna | 62.7 (8.6) | 20.5 (4.3) | 48.3 (10.0) | −34.9 (9.3) | 60.6 (9.3) | 23.1 (5.0) | 50.0 (11.0) | −35.0 (11.1) |
Temperate Savanna | 66.7 (8.7) | 32.8 (9.0) | 33.8 (9.4) | −1.4 (8.6) | 67.3 (11.3) | 23.3 (4.9) | 40.0 (15.1) | −21.8 (15.1) |
Deserts & Xeric Shrublands | 3.9 (2.8) | 40.8 (10.7) | 98.0 (1.5) | −96.6 (2.6) | 2.1 (1.8) | 70.3 (25.6) | 98.9 (0.9) | −96.2 (0.3) |
Temperate Forest | 52.3 (8.6) | 35.1 (3.5) | 56.2 (10.4) | −32.4 (12.4) | 29.9 (19.2) | 23.5 (0.7) | 81.4 (14.8) | −75.7 (19.1) |
Mediterranean | 43.4 (2.0) | 39.8 (1.9) | 66.1 (2.2) | −43.7 (3.7) | 50.9 (11.6) | 19.9 (4.3) | 62.7 (11.5) | −53.5 (11.9) |
Total | 55.6 (7.2) | 23.3 (3.9) | 56.4 (7.7) | −43.1 (7.6) | 53.9 (7.5) | 25.9 (4.3) | 57.6 (8.0) | −42.8 (8.1) |
FIRECCI51 | MCD64A1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Metric | This Study | Stroppiana et al. (2022) [13] | Franquesa et al. (2022) [11] | Padilla et al. (2018) [14] | This Study | Stroppiana et al. (2022) [13] | Franquesa et al. (2022) [11] | Padilla et al. (2018) [14] | Boschetti et al. (2018) [15] |
DC [%] | 56 | 60 | 67 | 28 | 54 | 58 | 62 | 48 | - |
Ce [%] | 23 | 25 | 19 | 54 | 26 | 21 | 19 | 35 | 40 |
Oe [%] | 56 | 49 | 43 | 67 | 58 | 54 | 49 | 62 | 73 |
relB [%] | −43 | −32 | −29 | −28 | −43 | −42 | −38 | −41 | −54 |
FireCCI51 | MCD64A1 | |||||||
---|---|---|---|---|---|---|---|---|
Ce [%] | Oe [%] | Ce [%] | Oe [%] | |||||
Biome | This Study | Franquesa et al. (2022) [11] | This Study | Franquesa et al. (2022) [11] | This Study | Franquesa et al. (2022) [11] | This Study | Franquesa et al. (2022) [11] |
Tropical forest | 30.2 | 22.0–34.0 | 72.8 | 66.7–72.2 | 35.2 | 20.6–35.7 | 72.7 | 70.9–78.6 |
Tropical Savanna | 20.5 | 15.1–20.6 | 48.3 | 34.8–39.9 | 23.1 | 13.8–22.7 | 50.0 | 39.9–45.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Ibarzabal, J.; Franquesa, M.; Rodriguez-Montellano, A.; Bastarrika, A. Sentinel-2 Reference Fire Perimeters for the Assessment of Burned Area Products over Latin America and the Caribbean for the Year 2019. Remote Sens. 2024, 16, 1166. https://doi.org/10.3390/rs16071166
Gonzalez-Ibarzabal J, Franquesa M, Rodriguez-Montellano A, Bastarrika A. Sentinel-2 Reference Fire Perimeters for the Assessment of Burned Area Products over Latin America and the Caribbean for the Year 2019. Remote Sensing. 2024; 16(7):1166. https://doi.org/10.3390/rs16071166
Chicago/Turabian StyleGonzalez-Ibarzabal, Jon, Magí Franquesa, Armando Rodriguez-Montellano, and Aitor Bastarrika. 2024. "Sentinel-2 Reference Fire Perimeters for the Assessment of Burned Area Products over Latin America and the Caribbean for the Year 2019" Remote Sensing 16, no. 7: 1166. https://doi.org/10.3390/rs16071166
APA StyleGonzalez-Ibarzabal, J., Franquesa, M., Rodriguez-Montellano, A., & Bastarrika, A. (2024). Sentinel-2 Reference Fire Perimeters for the Assessment of Burned Area Products over Latin America and the Caribbean for the Year 2019. Remote Sensing, 16(7), 1166. https://doi.org/10.3390/rs16071166