High-Precision Time Difference of Arrival Estimation Method Based on Phase Measurement
Abstract
:1. Introduction
- (1)
- We conducted short-baseline TDOA experiments using a precise time and phase wireless synchronization method based on frequency division.
- (2)
- We propose a TDOA estimation using phase measurements based on the integer least squares method.
- (3)
- We verify the effect of frequency instability on peak position-based estimation through model derivation and experiments.
2. System Models
2.1. Hardware Block Model
2.2. Signal Model with Different Oscillators
2.3. The Effect of Different Oscillators on TDOA Estimation
3. Time Synchronization Method
3.1. Synchronization Scheme
3.2. Compensation Time and Phase
4. High-Precision Time Delay Estimation
4.1. Ambiguity Integer Solution
- (1)
- Obtain the float solution with a standard LS problem:
- (2)
- Integer ambiguity is calculated as
4.2. Cramer–Rao Lower Bound
4.3. Anaylsis and Simulations
5. Experiments
5.1. Hardware Implementation
5.2. Performance of Synchronization
5.3. TDOA Measurements with Different Chirp Rates
5.4. Instantaneous Frequency Measurement
5.5. Three-Sensor TDOA Localization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mazurek, G.; Kulpa, K.; Droszcz, A. Multichannel SDR Platforms for Mobile PCL Applications. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 30–41. [Google Scholar] [CrossRef]
- Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomat. Nat. Hazards Risk 2016, 8, 18–33. [Google Scholar] [CrossRef]
- Lee, H.-W.; Lee, C.-S. Research on logistics of intelligent unmanned aerial vehicle integration system. J. Ind. Inf. Integr. 2023, 36, 100534. [Google Scholar] [CrossRef]
- Díez-González, J.; Ferrero-Guillén, R.; Verde, P.; Martínez-Gutiérrez, A.; Alija-Pérez, J.-M.; Perez, H. Analysis of synchronous localization systems for UAVs urban applications. Neurocomputing 2024, 564, 126969. [Google Scholar] [CrossRef]
- Thoma, R.S.; Andrich, C.; Galdo, G.D.; Dobereiner, M.; Hein, M.A.; Kaske, M.; Schafer, G.; Schieler, S.; Schneider, C.; Schwind, A.; et al. Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety. IEEE Commun. Mag. 2019, 57, 86–92. [Google Scholar] [CrossRef]
- Staudinger, E.; Zhang, S.; Pohlmann, R.; Dammann, A. The Role of Time in a Robotic Swarm: A Joint View on Communications, Localization, and Sensing. IEEE Commun. Mag. 2021, 59, 98–104. [Google Scholar] [CrossRef]
- Li, J.Z.; Lv, S.Y.; Lv, L.J.; Wu, S.; Liu, Y.; Nie, J.; Jin, Y.; Wang, C.L. Joint TDOA, FDOA and PDOA Localization Approaches and Performance Analysis. Remote Sens. 2023, 15, 915. [Google Scholar] [CrossRef]
- Yeredor, A.; Angel, E. Joint TDOA and FDOA Estimation: A Conditional Bound and Its Use for Optimally Weighted Localization. IEEE Trans. Signal Process. 2011, 59, 1612–1623. [Google Scholar] [CrossRef]
- Chen, Y.; Blum, R.S. On the Impact of Unknown Signals on Delay, Doppler, Amplitude, and Phase Parameter Estimation. IEEE Trans. Signal Process. 2019, 67, 431–443. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Yang, X.; Li, Q.; Liu, F.; Wang, W.; Li, C.; Duan, C. A Two-Stage Aerial Target Localization Method Using Time-Difference-of-Arrival Measurements with the Minimum Number of Radars. Remote Sens. 2023, 15, 2829. [Google Scholar] [CrossRef]
- Antonyuk, V.; Prudius, I.; Kawalec, A.; Lobur, M.; Nichoga, V. TDOA passive system for radio monitoring of targets. In Proceedings of the 2008 International Radar Symposium, Wroclaw, Poland, 21–23 May 2008; pp. 1–4. [Google Scholar]
- Kaczurova, M.; Hubacek, P.; Kaczur, M. Analysis of Determining the Position of LPI Targets by TDOA PSS. In Proceedings of the 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017. [Google Scholar]
- Gentz, R.; Scaglione, A.; Ferrari, L.; Hong, Y.W.P. PulseSS: A Pulse-Coupled Synchronization and Scheduling Protocol for Clustered Wireless Sensor Networks. IEEE Internet Things J. 2016, 3, 1222–1234. [Google Scholar] [CrossRef]
- Garg, A.; Yadav, A.; Sikora, A.; Sairam, A.S. Wireless Precision Time Protocol. IEEE Commun. Lett. 2018, 22, 812–815. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, D.J.; Chen, L.Q.; Wang, P. A Consensus-Based Time Synchronization Scheme with Low Overhead for Clustered Wireless Sensor Networks. IEEE Signal Process. Lett. 2018, 25, 1206–1210. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, R.; Yu, W.; Liang, D.; Liu, K.; Zhang, H.; Chen, Y. An Advanced Approach to Improve Synchronization Phase Accuracy with Compressive Sensing for LT-1 Bistatic Spaceborne SAR. Remote Sens. 2022, 14, 4621. [Google Scholar] [CrossRef]
- Grathwohl, A.; Stelzig, M.; Kanz, J.; Fenske, P.; Benedikter, A.; Knill, C.; Ullmann, I.; Hajnsek, I.; Moreira, A.; Krieger, G.; et al. Taking a Look Beneath the Surface: Multicopter UAV-Based Ground-Penetrating Imaging Radars. IEEE Microw. Mag. 2022, 23, 32–46. [Google Scholar] [CrossRef]
- Younis, M.; Metzig, R.; Krieger, G.; Bachmann, M.; Klein, R. Performance prediction and verification for the synchronization link of TanDEM-X. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 5206–5209. [Google Scholar]
- Loria, E.; Prager, S.; Seker, I.; Ahmed, R.; Hawkins, B.; Lavalle, M. Modeling the Effects of Oscillator Phase Noise and Synchronization on Multistatic SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Chan, Y.T.; Riley, J.M.F.; Plant, J.B. Modeling of time-delay and its application to estimation of nonstationary delays. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 577–581. [Google Scholar] [CrossRef]
- Moddemeijer, R. On the determination of the position of extrema of sampled correlators. IEEE Trans. Signal Process. 1991, 39, 216–219. [Google Scholar] [CrossRef]
- Jameson, I. Time Delay Estimation Iain Jameson Electronic Warfare and Radar; DTIC: Fort Belvoir, VA, USA, 2006. [Google Scholar]
- Prager, S.; Haynes, M.S.; Moghaddam, M. Wireless Subnanosecond RF Synchronization for Distributed Ultrawideband Software-Defined Radar Networks. IEEE Trans. Microw. Theory Tech. 2020, 68, 4787–4804. [Google Scholar] [CrossRef]
- Mghabghab, S.R.; Nanzer, J.A. Microwave Ranging via Least-Squares Estimation of Spectrally Sparse Signals in Software-Defined Radio. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 161–164. [Google Scholar] [CrossRef]
- Mannings, R. Ubiquitous Positioning; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Teunissen, P. Least-Squares Estimation of the Integer GPS Ambiguities. In Proceedings of the Invited Lecture, Section IV THEORY and methodology, IAG General Meeting, Beijing, China, 8–13 August 1993. [Google Scholar]
- Riley, W.J.; Howe, D.A. Handbook of Frequency Stability Analysis; National Institute of Standards and Technology: Boulder, CO, USA, 2008. [Google Scholar]
- Zhu, X.; Li, Y.; Yong, S.; Zhuang, Z. A Novel Definition and Measurement Method of Group Delay and Its Application. IEEE Trans. Instrum. Meas. 2008, 58, 229–233. [Google Scholar]
- Verhagen, S. The GNSS Integer Ambiguities: Estimation and Validation; Delft University of Technology: Delft, The Netherlands, 2005. [Google Scholar]
- Gustavsson, M.; Wikner, J.J.; Tan, N. CMOS Data Converters for Communications; Springer: New York, NY, USA, 2000. [Google Scholar]
- Oppenheim, A.V.; Willsky, A.S. Signals and Systems. In Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lombardi, M.; Nelson, L.M.; Novick, A.N.; Zhang, V.S. Time and Frequency Measurements Using the Global Positioning System. Cal Lab Int. J. Metrol. 2001, 8, 26–33. [Google Scholar]
- Cumming, W.; Wong, F.H. Digital processing of synthetic aperture radar data: Algorithms and implementation. Artech House 2005, 1, 108–110. [Google Scholar]
- Rubiola, E. Phase Noise and Frequency Stability in Oscillators; Cambridge University Press: Cambridge, UK, 2008; p. 220. [Google Scholar] [CrossRef]
- Sengijpta, S.K. Fundamentals of Statistical Signal Processing: Estimation Theory. Technometrics 1994, 37, 465–466. [Google Scholar] [CrossRef]
- Hatch, R. The Synergism of GPS Code and Carrier Measurements. Int. Geod. Symp. Satell. Doppler Position. 1982, 1, 1213–1231. [Google Scholar]
- Le, A.Q.; Teunissen, P. Recursive least-squares filtering of pseudorange measurements. In Proceedings of the European Navigation Conference, Manchester, UK, 7–10 May 2006; pp. 1–11. [Google Scholar]
- Mandlik, M.; Nemec, Z. An accurate Time-Difference measurement method for passive radar applications. In Proceedings of the 2013 23rd International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–17 April 2013; pp. 406–409. [Google Scholar]
Parameter | Value |
---|---|
Waveform | chirp |
Signal Bandwidth | 10 MHz |
Center Frequency | 3.6 GHz |
Pulse Repetition Time | 1 ms |
Signal Pulse Width | 3 μs |
Receiving Pulse | 5 μs |
Sample Rate | 2400 MHz |
Pulse Num per Trial | 100 |
TDOA Change Rate | −27.8 ns/s |
Parameter | Value |
---|---|
Power | 35 dBm |
Center Frequency | 3.6 GHz |
Pulse Width | 10 μs |
Analog Bandwidth | 1000 MHz |
Sample Rate | 4800 MHz |
Result | Bandwidth | ||||
---|---|---|---|---|---|
20 MHz | 40 MHz | 60 MHz | 80 MHz | 100 MHz | |
Instantaneous frequency STD | 141.49 Hz | 133.232 Hz | 147.48 Hz | 137.294 Hz | 144.88 Hz |
Test | Result | 1st Trial | 2nd Trial | 3rd Trial | 4th Trial | 5th Trial |
---|---|---|---|---|---|---|
sensor a and b | Pk-pos | 18.05 ps | 23.29 ps | 18.19 ps | 23.82 ps | 17.05 ps |
Pk-pha | 1.94 ps | 2.05 ps | 1.75 ps | 1.75 ps | 1.66 ps | |
sensor a and c | Pk-pos | 43.56 ps | 26.74 ps | 34.64 ps | 26.15 ps | 37.90 ps |
Pk-pha | 1.34 ps | 1.37 ps | 1.22 ps | 1.26 ps | 1.20 ps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Ge, X.; Zhang, Y.; Liang, X.; Li, H.; Wu, L.; Wei, J.; Bu, X. High-Precision Time Difference of Arrival Estimation Method Based on Phase Measurement. Remote Sens. 2024, 16, 1197. https://doi.org/10.3390/rs16071197
Xin J, Ge X, Zhang Y, Liang X, Li H, Wu L, Wei J, Bu X. High-Precision Time Difference of Arrival Estimation Method Based on Phase Measurement. Remote Sensing. 2024; 16(7):1197. https://doi.org/10.3390/rs16071197
Chicago/Turabian StyleXin, Jihao, Xuyang Ge, Yuan Zhang, Xingdong Liang, Hang Li, Linghao Wu, Jiashuo Wei, and Xiangxi Bu. 2024. "High-Precision Time Difference of Arrival Estimation Method Based on Phase Measurement" Remote Sensing 16, no. 7: 1197. https://doi.org/10.3390/rs16071197
APA StyleXin, J., Ge, X., Zhang, Y., Liang, X., Li, H., Wu, L., Wei, J., & Bu, X. (2024). High-Precision Time Difference of Arrival Estimation Method Based on Phase Measurement. Remote Sensing, 16(7), 1197. https://doi.org/10.3390/rs16071197