Weakly Supervised Object Detection for Remote Sensing Images via Progressive Image-Level and Instance-Level Feature Refinement
Abstract
:1. Introduction
- We propose a progressive image-level and instance-level feature refinement network to perceive more latent positive proposals and explore the instance-associative spatial correlation among instance regions.
- A multi-label attention mining loss (MAML) and an instance selection loss (ISL) are constructed to boost the representation of image-level and instance-level features by exploring supervision from the network itself.
- We optimize the classification and regression tasks by the constructed MAML and ISL loss functions to boost the performance of WSOD in RSIs. The proposed method outperforms previous state-of-the-art approaches on the NWPU VHR-10.v2 and DIOR datasets, which demonstrates the effectiveness of boosting deep features at both image level and instance level for WSOD.
2. Related Work
2.1. Weakly Supervised Object Detection
2.2. Feature Refinement for WSOD in RSIs
2.2.1. Image-Level Feature Refinement
2.2.2. Instance-Level Feature Refinement
3. The Proposed Method
Algorithm 1 Pipeline of image-level and instance-level feature refinement. | |
| |
1: | Generate attention map W by Equations (1) and (2) |
2: | Calculate MAML loss by Equations (4) and (5) |
3: | Generate enhanced image-level features by Equation (3) |
4: | Generate instance-level features R by RoI Pooling layer |
5: | Calculate proposal scores by Equations (6)–(8) |
6: | if image-level labels L contains category i then |
7: | Sort scores by confidence of category i |
8: | for r in R do |
9: | if sorted scores ≥ then |
10: | Put r in |
11: | for r in () do |
12: | Calculate between and () |
13: | if then |
14: | Put r in |
15: | Calculate number of ( and ) by |
16: | while do |
17: | for r in () do |
18: | Randomly put r in |
19: | |
20: | Generate enhanced instance-level features by Equations (9) and (10) |
21: | Calculate ISL loss by Equation (11) |
3.1. Motivations
3.2. Image-Level Feature Refinement Branch
3.3. Instance-Level Feature Refinement Branch
3.3.1. Salient RoI Feature Selection
3.3.2. Instance Selection Loss
3.4. MIL Branch
4. Experiments
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. Performance Evaluation
4.3.1. NWPU VHR-10.v2
4.3.2. DIOR
4.4. Ablation Studies
4.5. Extension: Performance on Natural Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Zhuang, Y.; Chen, H.; Chen, L.; Wang, G.; Gao, P.; Dong, H. Object-Centric Masked Image Modeling-Based Self-Supervised Pretraining for Remote Sensing Object Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5013–5025. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.; Zheng, K.; Jia, X. Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5509417. [Google Scholar] [CrossRef]
- Gao, L.; Sun, X.; Sun, X.; Zhuang, L.; Du, Q.; Zhang, B. Hyperspectral anomaly detection based on chessboard topology. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5505016. [Google Scholar] [CrossRef]
- Su, Y.; Gao, L.; Jiang, M.; Plaza, A.; Sun, X.; Zhang, B. NSCKL: Normalized Spectral Clustering With Kernel-Based Learning for Semisupervised Hyperspectral Image Classification. IEEE Trans. Cybern. 2023, 53, 6649–6662. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ng, M.K.; Gao, L.; Michalski, J.; Wang, Z. Eigenimage2Eigenimage (E2E): A Self-Supervised Deep Learning Network for Hyperspectral Image Denoising. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Gao, L.; Wang, D.; Zhuang, L.; Sun, X.; Huang, M.; Plaza, A. BS3LNet: A new blind-spot self-supervised learning network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5504218. [Google Scholar] [CrossRef]
- Small, C.; Sousa, D. Robust Cloud Suppression and Anomaly Detection in Time-Lapse Thermography. Remote Sens. 2024, 16, 255. [Google Scholar] [CrossRef]
- Gui, S.; Song, S.; Qin, R.; Tang, Y. Remote Sensing Object Detection in the Deep Learning Era—A Review. Remote Sens. 2024, 16, 327. [Google Scholar] [CrossRef]
- Feng, Y.; Han, B.; Wang, X.; Shen, J.; Guan, X.; Ding, H. Self-Supervised Transformers for Unsupervised SAR Complex Interference Detection Using Canny Edge Detector. Remote Sens. 2024, 16, 306. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, Z.; Xu, Y.; Wei, Z.; Plaza, A. Learning Orientation Information From Frequency-Domain for Oriented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5628512. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Bilen, H.; Vedaldi, A. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2846–2854. [Google Scholar] [CrossRef]
- Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple instance detection network with online instance classifier refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2843–2851. [Google Scholar] [CrossRef]
- Yang, K.; Li, D.; Dou, Y. Towards precise end-to-end weakly supervised object detection network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 7 October–2 November 2019; pp. 8372–8381. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, J.; Gao, D.; Guo, L.; Han, J. High-quality proposals for weakly supervised object detection. IEEE Trans. Image Process. 2020, 29, 5794–5804. [Google Scholar] [CrossRef]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 391–405. [Google Scholar] [CrossRef]
- Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; Yuille, A. Pcl: Proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, Y.; Li, X. Multiple instance graph learning for weakly supervised remote sensing object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5613112. [Google Scholar] [CrossRef]
- Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 675–685. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Chen, W.; Feng, X.; Yao, X.; Han, J. Self-guided Proposal Generation for Weakly Supervised Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5625311. [Google Scholar] [CrossRef]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. TCANet: Triple context-aware network for weakly supervised object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6946–6955. [Google Scholar] [CrossRef]
- Fasana, C.; Pasini, S.; Milani, F.; Fraternali, P. Weakly supervised object detection for remote sensing images: A survey. Remote Sens. 2022, 14, 5362. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.J. Weakly Supervised Learning for Transmission Line Detection Using Unpaired Image-to-Image Translation. Remote Sens. 2022, 14, 3421. [Google Scholar] [CrossRef]
- Berg, P.; Santana Maia, D.; Pham, M.T.; Lefèvre, S. Weakly supervised detection of marine animals in high resolution aerial images. Remote Sens. 2022, 14, 339. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Qian, W.; Diao, W.; Zhao, L.; Zhang, J.; Zhang, D. Dynamic pseudo-label generation for weakly supervised object detection in remote sensing images. Remote Sens. 2021, 13, 1461. [Google Scholar] [CrossRef]
- Foulds, J.; Frank, E. A review of multi-instance learning assumptions. Knowl. Eng. Rev. 2010, 25, 1–25. [Google Scholar] [CrossRef]
- Huang, Z.; Zou, Y.; Kumar, B.; Huang, D. Comprehensive attention self-distillation for weakly-supervised object detection. Adv. Neural Inf. Process. Syst. 2020, 33, 16797–16807. [Google Scholar]
- Lin, C.; Wang, S.; Xu, D.; Lu, Y.; Zhang, W. Object instance mining for weakly supervised object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11482–11489. [Google Scholar] [CrossRef]
- Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3325–3337. [Google Scholar] [CrossRef]
- Sun, Y.; Ran, J.; Yang, F.; Gao, C.; Kurozumi, T.; Kimata, H.; Ye, Z. Oriented Object Detection For Remote Sensing Images Based On Weakly Supervised Learning. In Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gungor, C.; Kovashka, A. Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 2185–2194. [Google Scholar] [CrossRef]
- Zhu, M.; Wan, S.; Jin, P.; Zhang, P. DFFNet: Dynamic Feature Fusion Network for Weakly Supervised Object Detection in Remote Sensing Images. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 1409–1414. [Google Scholar] [CrossRef]
- Qian, W.; Yan, Z.; Zhu, Z.; Yin, W. Weakly Supervised Part-Based Method for Combined Object Detection in Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5024–5036. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, Z.; Guo, C.; Zhang, H. WSODet: A Weakly Supervised Oriented Detector for Aerial Object Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5604012. [Google Scholar] [CrossRef]
- Qian, X.; Huo, Y.; Cheng, G.; Gao, C.; Yao, X.; Wang, W. Mining High-Quality Pseudoinstance Soft Labels for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5607615. [Google Scholar] [CrossRef]
- Feng, X.; Yao, X.; Cheng, G.; Han, J. Weakly supervised rotation-invariant aerial object detection network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 14146–14155. [Google Scholar] [CrossRef]
- Ma, L.; Luo, X.; Hong, H.; Zhang, Y.; Wang, L.; Wu, J. Scribble-attention hierarchical network for weakly supervised salient object detection in optical remote sensing images. Appl. Intell. 2023, 53, 12999–13017. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Chanussot, J.; Zareapoor, M.; Zhou, H.; Yang, J. Multipatch feature pyramid network for weakly supervised object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5610113. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Feng, X.; Yao, X.; Qian, X.; Han, J. Attention Erasing and Instance Sampling for Weakly Supervised Object Detection. IEEE Trans. Geosci. Remote Sens. 2023, 62, 5600910. [Google Scholar] [CrossRef]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. Progressive contextual instance refinement for weakly supervised object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8002–8012. [Google Scholar] [CrossRef]
- Huo, Y.; Qian, X.; Li, C.; Wang, W. Multiple Instance Complementary Detection and Difficulty Evaluation for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6006505. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2337–2348. [Google Scholar] [CrossRef]
- Wan, F.; Wei, P.; Jiao, J.; Han, Z.; Ye, Q. Min-entropy latent model for weakly supervised object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1297–1306. [Google Scholar] [CrossRef]
- Feng, X.; Yao, X.; Cheng, G.; Han, J.; Han, J. SAENet: Self-Supervised Adversarial and Equivariant Network for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5610411. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, Z.; Yang, X.; Liu, M.Y.; Lee, Y.J.; Schwing, A.G.; Kautz, J. Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10598–10607. [Google Scholar] [CrossRef]
- Ji, R.; Liu, Z.; Zhang, L.; Liu, J.; Zuo, X.; Wu, Y.; Zhao, C.; Wang, H.; Yang, L. Multi-peak Graph-based Multi-instance Learning for Weakly Supervised Object Detection. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 70. [Google Scholar] [CrossRef]
- Gao, W.; Wan, F.; Yue, J.; Xu, S.; Ye, Q. Discrepant multiple instance learning for weakly supervised object detection. Pattern Recognit. 2022, 122, 108233. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, C.; Yu, X.; Xiao, B.; Yang, Y. Pyramidal Multiple Instance Detection Network With Mask Guided Self-Correction for Weakly Supervised Object Detection. IEEE Trans. Image Process. 2021, 30, 3029–3040. [Google Scholar] [CrossRef]
- Yin, Y.; Deng, J.; Zhou, W.; Li, H. Instance mining with class feature banks for weakly supervised object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 3190–3198. [Google Scholar] [CrossRef]
- Jia, Q.; Wei, S.; Ruan, T.; Zhao, Y.; Zhao, Y. Gradingnet: Towards providing reliable supervisions for weakly supervised object detection by grading the box candidates. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 1682–1690. [Google Scholar] [CrossRef]
- Li, X.; Yi, S.; Zhang, R.; Fu, X.; Jiang, H.; Wang, C.; Liu, Z.; Gao, J.; Yu, J.; Yu, M.; et al. Dynamic sample weighting for weakly supervised object detection. Image Vis. Comput. 2022, 122, 104444. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Feng, J. Ml-locnet: Improving object localization with multi-view learning network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 240–255. [Google Scholar] [CrossRef]
- Shen, Y.; Ji, R.; Wang, Y.; Wu, Y.; Cao, L. Cyclic guidance for weakly supervised joint detection and segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 697–707. [Google Scholar] [CrossRef]
Methods | Airplane | Ship | Storage Tank | Baseball Diamond | Tennis Court | Basketball Court | Ground Track Field | Harbor | Bridge | Vehicle | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
Fully supervised: | |||||||||||
COPD [51] | 62.3 | 69.4 | 64.5 | 82.1 | 34.1 | 35.3 | 84.2 | 56.3 | 16.4 | 44.3 | 54.9 |
Transferred CNN [52] | 66.0 | 57.1 | 85.0 | 80.9 | 35.1 | 45.5 | 79.4 | 62.6 | 43.2 | 41.3 | 59.6 |
RICNN [53] | 88.7 | 78.3 | 86.3 | 89.1 | 42.3 | 56.9 | 87.7 | 67.5 | 62.3 | 72.0 | 73.1 |
RCNN [54] | 85.4 | 88.9 | 62.8 | 19.7 | 90.7 | 58.2 | 68.0 | 79.9 | 54.2 | 49.9 | 65.8 |
Fast RCNN [55] | 90.9 | 90.6 | 89.3 | 47.3 | 100.0 | 85.9 | 84.9 | 88.2 | 80.3 | 69.8 | 82.7 |
Faster RCNN [45] | 90.9 | 86.3 | 90.5 | 98.2 | 89.7 | 69.6 | 100.0 | 80.1 | 61.5 | 78.1 | 84.5 |
RICO [48] | 99.7 | 90.8 | 90.6 | 92.9 | 90.3 | 80.1 | 90.8 | 80.3 | 68.5 | 87.1 | 87.1 |
Weakly supervised: | |||||||||||
WSDDN [14] | 30.1 | 41.7 | 35.0 | 88.9 | 12.9 | 23.9 | 99.4 | 13.9 | 1.9 | 3.6 | 35.1 |
OICR [15] | 13.7 | 67.4 | 57.2 | 55.2 | 13.6 | 39.7 | 92.8 | 0.2 | 1.8 | 3.7 | 34.5 |
PCL [20] | 26.0 | 63.8 | 2.5 | 89.8 | 64.5 | 76.1 | 77.9 | 0.0 | 1.3 | 15.7 | 39.4 |
MELM [49] | 80.9 | 69.3 | 10.5 | 90.2 | 12.8 | 20.1 | 99.2 | 17.1 | 14.2 | 8.7 | 42.3 |
DCL [22] | 72.7 | 74.3 | 37.1 | 82.6 | 36.9 | 42.3 | 84.0 | 39.6 | 16.8 | 35.0 | 52.1 |
DPLG [28] | 80.9 | 10.5 | 90.1 | 64.4 | 69.1 | 80.2 | 8.7 | 14.0 | 39.6 | 78.3 | 53.6 |
PCIR [43] | 90.8 | 78.8 | 36.4 | 90.8 | 22.6 | 52.2 | 88.5 | 42.4 | 11.7 | 35.5 | 55.0 |
MIG [21] | 88.7 | 71.6 | 75.2 | 94.2 | 37.6 | 47.7 | 100.0 | 27.3 | 8.3 | 9.1 | 56.0 |
TCANet [24] | 89.4 | 78.2 | 78.4 | 90.8 | 35.3 | 50.4 | 90.9 | 42.4 | 4.1 | 28.3 | 58.8 |
SAENet [50] | 82.9 | 74.5 | 50.2 | 96.7 | 55.7 | 72.9 | 100.0 | 36.5 | 6.3 | 31.9 | 60.7 |
WSODet [37] | 95.3 | 75.6 | 81.9 | 98.0 | 20.9 | 56.7 | 100.0 | 29.8 | 5.1 | 48.1 | 61.3 |
SPG [23] | 90.4 | 81.0 | 59.5 | 92.3 | 35.6 | 51.4 | 99.9 | 58.7 | 17.0 | 43.0 | 62.8 |
PSL [38] | 87.6 | 80.1 | 57.3 | 94.0 | 36.4 | 80.4 | 100.0 | 56.9 | 9.8 | 35.6 | 63.8 |
Ours | 90.8 | 81.6 | 56.6 | 91.7 | 51.9 | 69.5 | 100.0 | 53.4 | 16.3 | 40.5 | 65.2 |
Methods | Airplane | Ship | Storage Tank | Baseball Diamond | Tennis Court | Basketball Court | Ground Track Field | Harbor | Bridge | Vehicle | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
WSDDN [14] | 22.3 | 36.8 | 40.0 | 92.5 | 18.0 | 24.2 | 99.3 | 14.8 | 1.7 | 2.9 | 35.3 |
OICR [15] | 29.4 | 83.3 | 20.5 | 81.8 | 40.9 | 32.1 | 86.6 | 7.4 | 3.7 | 14.4 | 40.0 |
PCL [20] | 11.8 | 50.0 | 12.8 | 98.7 | 84.5 | 77.4 | 90.7 | 0.0 | 9.3 | 15.6 | 45.6 |
MELM [49] | 86.0 | 77.4 | 21.4 | 98.3 | 10.7 | 43.5 | 95.0 | 40.0 | 11.8 | 14.6 | 49.9 |
DPLG [28] | 87.2 | 16.8 | 96.1 | 75.1 | 73.2 | 86.3 | 16.3 | 18.7 | 46.7 | 85.1 | 61.5 |
PCIR [43] | 100.0 | 93.1 | 64.1 | 99.3 | 64.8 | 79.3 | 89.7 | 63.0 | 13.3 | 52.2 | 71.9 |
MIG [21] | 97.8 | 90.3 | 87.2 | 98.7 | 54.9 | 64.2 | 100.0 | 74.1 | 13.0 | 21.6 | 70.2 |
TCANet [24] | 96.9 | 91.8 | 95.1 | 88.7 | 66.9 | 62.8 | 96.0 | 54.2 | 19.6 | 55.6 | 72.8 |
SAENet [50] | 97.1 | 91.7 | 87.8 | 98.7 | 40.9 | 81.1 | 100.0 | 70.4 | 14.8 | 52.2 | 73.5 |
WSODet [37] | 96.7 | 93.2 | 82.5 | 99.5 | 40.5 | 58.0 | 100.0 | 67.7 | 9.7 | 73.3 | 72.4 |
SPG [23] | 98.1 | 92.7 | 70.1 | 99.7 | 51.9 | 80.1 | 96.2 | 72.4 | 13.0 | 60.0 | 73.4 |
PSL [38] | 94.4 | 86.6 | 68.5 | 97.8 | 69.8 | 87.5 | 100.0 | 68.6 | 16.0 | 56.6 | 74.6 |
Ours | 98.6 | 94.7 | 76.4 | 83.9 | 61.3 | 82.4 | 100.0 | 78.1 | 19.5 | 57.2 | 75.2 |
Methods | Airplane | Airport | Baseball Field | Basketball Court | Bridge | Chimney | Dam | Expressway Service Area | Expressway Toll Station | Golf Field | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
WSDDN [14] | 9.1 | 39.7 | 37.8 | 20.2 | 0.3 | 12.2 | 0.6 | 0.7 | 11.9 | 4.9 | 13.3 |
OICR [15] | 8.7 | 28.3 | 44.1 | 18.2 | 1.3 | 20.2 | 0.1 | 0.7 | 29.9 | 13.8 | 16.5 |
PCL [20] | 21.5 | 35.2 | 59.8 | 23.5 | 3.0 | 43.7 | 0.1 | 0.9 | 1.5 | 2.9 | 18.2 |
MELM [49] | 28.1 | 3.2 | 62.5 | 28.7 | 0.1 | 62.5 | 0.2 | 13.1 | 28.4 | 15.2 | 18.7 |
DCL [22] | 20.9 | 22.7 | 54.2 | 11.5 | 6.0 | 61.0 | 0.1 | 1.1 | 31.0 | 30.9 | 20.2 |
PCIR [43] | 30.4 | 36.1 | 54.2 | 26.6 | 9.1 | 58.6 | 0.2 | 9.7 | 36.2 | 32.6 | 24.9 |
MIG [21] | 22.2 | 52.6 | 62.8 | 25.8 | 8.5 | 67.4 | 0.7 | 8.9 | 28.7 | 57.3 | 25.1 |
TCANet [24] | 25.1 | 30.8 | 62.9 | 40.0 | 4.1 | 67.8 | 8.1 | 23.8 | 29.9 | 22.3 | 25.8 |
SPG [23] | 31.3 | 36.7 | 62.8 | 29.1 | 6.1 | 62.7 | 0.3 | 15.0 | 30.1 | 35.0 | 25.8 |
SAENet [50] | 20.6 | 62.7 | 62.7 | 23.5 | 7.6 | 64.6 | 0.2 | 34.5 | 30.6 | 55.4 | 27.1 |
WSODet [37] | 32.2 | 53.3 | 66.5 | 76.6 | 0.1 | 57.1 | 0.1 | 0.1 | 0.4 | 42.8 | 27.3 |
PSL [38] | 29.1 | 49.8 | 70.9 | 41.4 | 7.2 | 45.5 | 0.2 | 35.4 | 36.8 | 60.8 | 28.6 |
Ours | 32.9 | 70.5 | 63.2 | 45.7 | 0.2 | 69.7 | 0.2 | 12.4 | 39.4 | 56.4 | 29.1 |
Methods | Ground Track Field | Harbor | Overpass | Ship | Stadium | Storage Tank | Tennis Court | Train Station | Vehicle | Windmill | mAP |
WSDDN [14] | 42.4 | 4.7 | 1.1 | 0.7 | 63.0 | 4.0 | 6.1 | 0.5 | 4.6 | 1.1 | 13.3 |
OICR [15] | 57.4 | 10.7 | 11.1 | 9.1 | 59.3 | 7.1 | 0.7 | 0.1 | 9.1 | 0.4 | 16.5 |
PCL [20] | 56.4 | 16.8 | 11.1 | 9.1 | 57.6 | 9.1 | 2.5 | 0.1 | 4.6 | 4.6 | 18.2 |
MELM [49] | 41.1 | 26.1 | 0.4 | 9.1 | 8.6 | 15.0 | 20.6 | 9.8 | 0.1 | 0.5 | 18.7 |
DCL [22] | 56.5 | 5.1 | 2.7 | 9.1 | 63.7 | 9.1 | 10.4 | 0.0 | 7.3 | 0.8 | 20.2 |
PCIR [43] | 58.5 | 8.6 | 21.6 | 12.1 | 64.3 | 9.1 | 13.6 | 0.3 | 9.1 | 7.5 | 24.9 |
MIG [21] | 47.7 | 23.8 | 0.8 | 6.4 | 54.1 | 13.2 | 4.1 | 14.8 | 0.2 | 2.4 | 25.1 |
TCANet [24] | 53.9 | 24.8 | 11.1 | 9.1 | 46.4 | 13.7 | 31.0 | 1.5 | 9.1 | 1.0 | 25.8 |
SPG [23] | 48.0 | 27.1 | 12.0 | 10.0 | 60.0 | 15.1 | 21.0 | 9.9 | 3.2 | 0.1 | 25.8 |
SAENet [50] | 52.7 | 17.6 | 6.9 | 9.1 | 51.6 | 15.4 | 1.7 | 14.4 | 1.4 | 9.2 | 27.1 |
WSODet [37] | 66.6 | 0.1 | 1.9 | 2.0 | 52.6 | 22.4 | 68.8 | 0.2 | 1.2 | 0.3 | 27.3 |
PSL [38] | 48.5 | 14.0 | 25.1 | 18.5 | 48.9 | 11.7 | 11.9 | 3.5 | 11.3 | 1.7 | 28.6 |
Ours | 55.3 | 16.6 | 0.6 | 9.1 | 54.8 | 18.1 | 11.0 | 16.1 | 9.1 | 1.1 | 29.1 |
Methods | Airplane | Airport | Baseball Field | Basketball Court | Bridge | Chimney | Dam | Expressway Service Area | Expressway Toll Station | Golf Field | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
WSDDN [14] | 5.7 | 59.9 | 94.2 | 55.9 | 4.9 | 23.4 | 1.0 | 6.8 | 44.5 | 12.8 | 32.4 |
OICR [15] | 16.0 | 51.5 | 94.8 | 55.8 | 3.6 | 23.9 | 0.0 | 4.8 | 56.7 | 22.4 | 34.8 |
PCL [20] | 61.1 | 46.9 | 95.4 | 63.6 | 7.3 | 95.1 | 0.2 | 5.7 | 5.1 | 50.8 | 41.5 |
MELM [49] | 77.0 | 28.9 | 92.7 | 63.0 | 13.0 | 90.1 | 0.2 | 17.0 | 37.9 | 44.6 | 43.3 |
PCIR [43] | 81.6 | 51.3 | 96.2 | 73.5 | 5.0 | 94.7 | 15.9 | 32.8 | 46.0 | 48.6 | 48.4 |
MIG [21] | 77.0 | 46.9 | 95.4 | 63.6 | 23.0 | 95.1 | 0.2 | 17.0 | 57.9 | 50.8 | 46.8 |
TCANet [24] | 91.2 | 69.4 | 95.5 | 67.5 | 18.9 | 97.8 | 0.2 | 70.5 | 54.3 | 51.4 | 49.4 |
SPG [23] | 80.5 | 32.0 | 98.7 | 65.0 | 15.2 | 96.1 | 22.5 | 17.0 | 46.1 | 51.0 | 48.3 |
SAENet [50] | 91.2 | 69.4 | 95.5 | 67.5 | 18.9 | 97.8 | 0.2 | 70.5 | 54.3 | 51.4 | 49.4 |
WSODet [37] | 95.2 | 81.0 | 95.7 | 88.0 | 5.9 | 94.1 | 1.4 | 1.1 | 3.7 | 92.1 | 49.5 |
Ours | 88.3 | 69.1 | 98.8 | 69.4 | 19.9 | 97.8 | 0.3 | 24.7 | 56.2 | 54.4 | 52.3 |
Methods | Ground Track Field | Harbor | Overpass | Ship | Stadium | Storage Tank | Tennis Court | Train Station | Vehicle | Windmill | mAP |
WSDDN [14] | 89.9 | 5.5 | 10.0 | 23.0 | 98.5 | 79.6 | 15.1 | 3.5 | 11.6 | 3.2 | 32.4 |
OICR [15] | 91.4 | 18.2 | 18.7 | 31.8 | 98.3 | 81.3 | 7.5 | 1.2 | 15.8 | 2.0 | 34.8 |
PCL [20] | 89.4 | 42.1 | 19.8 | 37.9 | 97.9 | 80.7 | 13.8 | 0.2 | 10.5 | 6.9 | 41.5 |
MELM [49] | 88.1 | 49.4 | 15.7 | 28.2 | 98.3 | 83.0 | 22.8 | 10.3 | 4.6 | 2.2 | 43.3 |
PCIR [43] | 85.3 | 38.9 | 20.2 | 30.6 | 84.6 | 91.5 | 56.3 | 3.8 | 10.5 | 1.3 | 48.4 |
MIG [21] | 89.4 | 42.1 | 19.8 | 37.9 | 97.9 | 80.7 | 13.8 | 10.3 | 10.5 | 6.9 | 46.8 |
TCANet [24] | 88.3 | 48.0 | 2.3 | 33.6 | 14.1 | 83.4 | 65.6 | 19.9 | 16.4 | 2.9 | 49.4 |
SPG [23] | 89.2 | 49.5 | 22.0 | 35.2 | 98.6 | 90.0 | 32.6 | 12.7 | 10.0 | 2.3 | 48.3 |
SAENet [50] | 88.3 | 48.0 | 2.3 | 33.6 | 14.1 | 83.4 | 65.6 | 19.9 | 16.4 | 2.9 | 49.4 |
WSODet [37] | 95.3 | 1.4 | 13.6 | 43.1 | 95.9 | 90.7 | 89.4 | 0.2 | 17.1 | 5.7 | 49.5 |
Ours | 89.6 | 49.1 | 19.4 | 34.5 | 96.7 | 84.7 | 63.2 | 15.6 | 11.6 | 3.4 | 52.3 |
Methods | IM | IN | mAP | CorLoc | ||
---|---|---|---|---|---|---|
w.o. MAML | w. MAML | w.o. ISL | w. ISL | |||
A | 56.3 | 70.4 | ||||
B | ✓ | 61.4 | 71.5 | |||
C | ✓ | 62.3 | 72.6 | |||
D | ✓ | 61.3 | 72.2 | |||
E | ✓ | 62.0 | 73.1 | |||
F | ✓ | ✓ | 65.2 | 75.2 |
Methods | IM | IN | mAP | CorLoc | ||
---|---|---|---|---|---|---|
w.o. MAML | w. MAML | w.o. ISL | w. ISL | |||
A | 24.6 | 46.3 | ||||
B | ✓ | 25.5 | 49.5 | |||
C | ✓ | 26.7 | 50.3 | |||
D | ✓ | 26.4 | 50.6 | |||
E | ✓ | 27.3 | 49.1 | |||
F | ✓ | ✓ | 29.1 | 52.3 |
Method | 07-AP50 | 07-Cor | 12-AP50 | 12-Cor |
---|---|---|---|---|
REG [16] | 48.6 | 66.8 | 46.8 | 69.5 |
MPG-MIL [57] | 50.4 | 67.1 | 46.9 | 67.4 |
PG + PS [17] | 51.1 | 69.2 | 48.3 | 68.7 |
D-MIL [58] | 53.5 | 68.7 | 49.6 | 70.1 |
Xu et al. [59] | 53.9 | 69.8 | 52.8 | 73.3 |
CFB [60] | 54.3 | 70.7 | 49.4 | 69.6 |
BGM + IBM [61] | 54.3 | 72.1 | 50.5 | 71.9 |
DSW [62] | 54.7 | 73.3 | 53.8 | 69.6 |
Ren et al. [56] | 54.9 | 68.8 | 52.1 | 70.9 |
PSL [38] | 56.3 | 70.3 | – | – |
Ours | 57.5 | 71.0 | 53.9 | 71.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Wu, Z.; Xu, Y.; Wei, Z. Weakly Supervised Object Detection for Remote Sensing Images via Progressive Image-Level and Instance-Level Feature Refinement. Remote Sens. 2024, 16, 1203. https://doi.org/10.3390/rs16071203
Zheng S, Wu Z, Xu Y, Wei Z. Weakly Supervised Object Detection for Remote Sensing Images via Progressive Image-Level and Instance-Level Feature Refinement. Remote Sensing. 2024; 16(7):1203. https://doi.org/10.3390/rs16071203
Chicago/Turabian StyleZheng, Shangdong, Zebin Wu, Yang Xu, and Zhihui Wei. 2024. "Weakly Supervised Object Detection for Remote Sensing Images via Progressive Image-Level and Instance-Level Feature Refinement" Remote Sensing 16, no. 7: 1203. https://doi.org/10.3390/rs16071203
APA StyleZheng, S., Wu, Z., Xu, Y., & Wei, Z. (2024). Weakly Supervised Object Detection for Remote Sensing Images via Progressive Image-Level and Instance-Level Feature Refinement. Remote Sensing, 16(7), 1203. https://doi.org/10.3390/rs16071203