Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico
Abstract
:1. Introduction
1.1. Description of OpenET Platform Models
1.2. geeSEBAL
1.3. eeMETRIC
1.4. SSEBop
1.5. SIMS
1.6. PT-JPL
1.7. ALEXI/DisALEXI Model
1.8. Ensemble ET
2. Materials and Methods
2.1. Study Site Description and Setting
2.2. Climate
2.3. Measurement of Evapotranspiration Using Eddy Covariance
2.4. Evapotranspiration (ETec)
2.5. Comparative Analysis Procedure
3. Results
3.1. Annual and Growing Season ET of Pecan
3.2. geeSEBAL
3.3. eeMETRIC
3.4. SSEBop
3.5. SIMS
3.6. PT-JPL
3.7. ALEXI/DisALEXI
3.8. Ensemble
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ET (mm/month) 2017 | ||||||||
---|---|---|---|---|---|---|---|---|
Month | ETec | geeSEBAL | eeMETRIC | SSEBop | SIMS | PT-JPL | ALEXI/DisALEXI | Ensemble |
January | 21.91 | 36.28 | 52.32 | 58.70 | 47.38 | 64.20 | 40.21 | 49.65 |
February | 31.16 | 35.11 | 74.86 | 56.95 | 34.37 | 32.61 | 46.40 | 42.57 |
March | 66.27 | 41.49 | 74.98 | 48.10 | 39.68 | 41.92 | 61.13 | 49.09 |
April | 106.86 | 112.39 | 153.78 | 152.60 | 116.01 | 105.60 | 92.31 | 120.31 |
May | 162.63 | 184.88 | 201.24 | 198.39 | 203.72 | 175.87 | 185.71 | 190.49 |
June | 203.35 | 178.90 | 221.65 | 219.18 | 217.37 | 181.19 | 162.63 | 196.53 |
July | 207.43 | 179.33 | 181.43 | 181.75 | 189.97 | 178.71 | 223.56 | 181.81 |
August | 195.70 | 178.92 | 179.40 | 187.44 | 183.45 | 175.75 | 147.00 | 178.83 |
September | 157.63 | 133.07 | 162.33 | 173.20 | 156.31 | 133.72 | 153.14 | 151.95 |
October | 115.19 | 100.22 | 116.11 | 133.47 | 111.67 | 109.78 | 105.11 | 109.45 |
November | 53.36 | 55.29 | 95.84 | 88.26 | 68.03 | 72.64 | 70.99 | 74.08 |
December | 17.20 | 17.96 | 61.08 | 54.98 | 27.14 | 30.48 | 29.85 | 30.62 |
Total | 1338.69 | 1253.83 | 1575.02 | 1553.02 | 1395.10 | 1302.48 | 1318.04 | 1375.38 |
GS | 1148.79 | 1067.71 | 1215.94 | 1246.03 | 1178.50 | 1060.62 | 1069.46 | 1129.38 |
MRD-GS | --- | 7.1% | 5.8% | 8.5% | 2.6% | 7.7% | 6.9% | 1.7% |
ET (mm/month) 2018 | ||||||||
January | 24.21 | 19.31 | 38.71 | 59.89 | 20.48 | 29.74 | 30.15 | 28.98 |
February | 30.88 | 29.75 | 59.80 | 64.68 | 39.94 | 32.84 | 40.08 | 41.21 |
March | 62.75 | 28.24 | 85.11 | 78.41 | 33.60 | 30.38 | 63.60 | 52.83 |
April | 112.52 | 88.25 | 147.00 | 131.10 | 99.03 | 94.46 | 112.28 | 111.20 |
May | 155.90 | 155.41 | 223.45 | 203.05 | 216.66 | 166.71 | 179.59 | 189.98 |
June | 199.79 | 187.51 | 218.31 | 216.18 | 215.95 | 180.20 | 156.53 | 197.50 |
July | 207.48 | 202.29 | 189.70 | 193.05 | 211.82 | 197.57 | 230.82 | 199.11 |
August | 201.18 | 170.37 | 201.01 | 188.98 | 196.11 | 158.56 | 158.02 | 177.50 |
September | 153.59 | 147.21 | 133.61 | 140.04 | 137.52 | 155.86 | 141.42 | 142.53 |
October | 83.72 | 92.61 | 84.83 | 102.58 | 94.55 | 104.93 | 98.05 | 97.20 |
November | 48.68 | 54.56 | 63.94 | 79.47 | 46.10 | 60.46 | 66.32 | 61.08 |
December | 17.60 | 26.96 | 48.41 | 60.12 | 33.74 | 32.03 | 33.66 | 33.75 |
Total | 1298.30 | 1202.48 | 1493.88 | 1517.53 | 1345.50 | 1243.73 | 1310.51 | 1332.89 |
GS | 1114.18 | 1043.65 | 1197.91 | 1174.97 | 1171.65 | 1058.29 | 1076.71 | 1115.03 |
MRD-GS | --- | 6.3% | 7.5% | 5.5% | 5.2% | 5.0% | 3.4% | 0.08% |
ET (mm/month) 2019 | ||||||||
January | 22.02 | 20.49 | 44.22 | 53.56 | 22.27 | 42.54 | 38.37 | 37.60 |
February | 28.76 | 22.31 | 41.25 | 61.40 | 22.83 | 42.48 | 42.31 | 38.63 |
March | 63.41 | 35.74 | 70.53 | 62.91 | 47.72 | 61.69 | 50.38 | 54.86 |
April | 98.88 | 86.61 | 157.87 | 126.61 | 98.17 | 73.79 | 89.85 | 98.93 |
May | 145.40 | 155.47 | 182.23 | 187.49 | 192.29 | 163.57 | 134.78 | 170.54 |
June | 186.60 | 176.56 | 218.05 | 213.73 | 213.45 | 166.50 | 152.70 | 190.96 |
July | 217.71 | 204.96 | 215.18 | 211.71 | 216.32 | 195.62 | 106.19 | 207.41 |
August | 204.85 | 173.26 | 199.52 | 202.18 | 202.79 | 171.27 | 114.05 | 188.63 |
September | 143.62 | 135.26 | 155.31 | 157.51 | 152.02 | 139.65 | 148.04 | 147.77 |
October | 97.48 | 95.65 | 114.61 | 123.35 | 103.72 | 106.81 | 101.04 | 105.56 |
November | 47.09 | 36.65 | 50.62 | 65.72 | 41.30 | 60.74 | 52.48 | 51.52 |
December | 17.20 | 25.18 | 40.78 | 56.40 | 30.78 | 47.46 | 41.61 | 40.57 |
Total | 1273.02 | 1168.13 | 1490.18 | 1522.56 | 1343.67 | 1272.13 | 1071.80 | 1332.98 |
GS | 1094.54 | 1027.76 | 1242.78 | 1222.57 | 1178.76 | 1017.21 | 846.65 | 1109.80 |
MRD-GS | --- | 6.1% | 13.5% | 11.7% | 7.7% | 7.1% | 22.7% | 1.4% |
ET (mm/month) 2020 | ||||||||
January | 22.39 | 27.00 | 57.53 | 59.05 | 24.11 | 42.09 | 38.31 | 41.19 |
February | 27.87 | 39.15 | 58.58 | 63.09 | 43.09 | 42.39 | 50.01 | 48.52 |
March | 51.22 | 86.79 | 116.22 | 95.89 | 86.24 | 91.26 | 63.18 | 89.65 |
April | 97.60 | 115.30 | 147.34 | 138.54 | 100.19 | 105.71 | 99.56 | 115.07 |
May | 155.25 | 182.69 | 227.36 | 232.96 | 217.04 | 177.36 | 185.08 | 204.48 |
June | 196.16 | 201.26 | 231.93 | 237.82 | 229.73 | 186.79 | 188.74 | 212.89 |
July | 215.97 | 212.30 | 224.63 | 223.86 | 222.12 | 199.46 | 141.36 | 216.90 |
August | 205.07 | 176.72 | 207.77 | 203.48 | 200.78 | 166.97 | 163.36 | 187.30 |
September | 152.82 | 125.01 | 130.63 | 154.50 | 143.91 | 121.82 | 146.26 | 137.57 |
October | 103.39 | 101.42 | 125.50 | 124.32 | 112.13 | 114.76 | 107.06 | 114.21 |
November | 56.49 | 42.94 | 74.41 | 84.36 | 52.99 | 56.46 | 63.86 | 61.29 |
December | 18.31 | 34.87 | 68.83 | 67.32 | 25.08 | 25.07 | 31.39 | 33.25 |
Total | 1302.54 | 1345.45 | 1670.74 | 1685.18 | 1457.41 | 1330.15 | 1278.17 | 1462.32 |
GS | 1126.26 | 1114.70 | 1295.16 | 1315.47 | 1225.90 | 1072.88 | 1031.42 | 1188.42 |
MRD-GS | --- | 1.0% | 15.0% | 16.8% | 8.9% | 4.7% | 8.4% | 5.5% |
ET (mm/month) 2021 | ||||||||
January | 21.40 | 40.79 | 56.99 | 50.59 | 26.69 | 44.00 | 29.07 | 40.47 |
February | 29.94 | 19.64 | 54.31 | 70.84 | 39.44 | 38.28 | 43.36 | 41.91 |
March | 62.72 | 33.49 | 77.29 | 78.80 | 36.92 | 33.12 | 78.07 | 55.85 |
April | 103.02 | 95.78 | 126.50 | 119.85 | 95.47 | 63.05 | 98.89 | 101.04 |
May | 152.16 | 167.19 | 217.66 | 217.71 | 207.67 | 168.43 | 165.25 | 189.16 |
June | 185.10 | 201.20 | 206.44 | 217.80 | 198.10 | 180.03 | 168.99 | 201.57 |
July | 188.89 | 193.96 | 195.66 | 186.35 | 195.29 | 182.10 | 155.88 | 189.74 |
August | 186.09 | 161.41 | 172.48 | 174.93 | 178.61 | 156.98 | 203.77 | 168.71 |
September | 139.43 | 133.82 | 145.43 | 152.64 | 141.74 | 135.30 | 136.80 | 138.95 |
October | 100.95 | 98.38 | 137.16 | 132.20 | 110.12 | 106.86 | 126.35 | 118.03 |
November | 45.21 | 56.79 | 71.14 | 74.70 | 60.86 | 70.80 | 56.85 | 64.87 |
December | 17.89 | 27.17 | 67.10 | 29.48 | 29.27 | 49.40 | 37.35 | 35.39 |
Total | 1232.81 | 1229.64 | 1528.15 | 1505.89 | 1320.17 | 1228.34 | 1300.62 | 1345.69 |
GS | 1055.64 | 1051.75 | 1201.33 | 1201.48 | 1126.99 | 992.74 | 1055.92 | 1107.20 |
MRD-GS | --- | 0.37% | 13.8% | 13.8% | 6.7% | 6.0% | 0.03% | 4.9% |
Total ET (2017–2021) | ||||||||
Annual Avg. | 1289 | 1240 | 1552 | 1557 | 1372 | 1275 | 1256 | 1370 |
MRD-Annual | --- | 4.4% | 23.7% | 24.2% | 7.5% | 1.2% | 3.0% | 7.3% |
GS Avg. | 1108 | 1061 | 1231 | 1232 | 1176 | 1040 | 1016 | 1130 |
MRD-GS | --- | 4.2% | 11.1% | 11.2% | 6.2% | 6.1% | 8.3% | 2.0% |
Year 2017 | |||||||
---|---|---|---|---|---|---|---|
Model/Criteria | Intercept | Slope | R2 | RMSE | MBE | SEE | p−Value |
geeSEBAL | 6.50 | 0.88 | 0.9494 | 18.1 | −7.2 | 15.6 | <0.05 |
eeMETRIC | 45.4 | 0.77 | 0.8991 | 31.1 | 19.7 | 19.7 | <0.05 |
SSEBop | 36.0 | 0.84 | 0.8998 | 28.8 | 17.9 | 21.4 | <0.05 |
SIMS | 9.60 | 0.96 | 0.9344 | 18.5 | 4.7 | 19.3 | <0.05 |
PT-JPT | 20.1 | 0.79 | 0.9288 | 21.3 | −3.0 | 16.8 | <0.05 |
ALEXI/DisALEXI | 17.7 | 0.83 | 0.9000 | 22.8 | −1.7 | 21.0 | <0.05 |
Ensemble | 19.4 | 0.85 | 0.9454 | 17.8 | 3.1 | 15.7 | <0.05 |
Year 2018 | |||||||
geeSEBAL | −0.11 | 0.93 | 0.9601 | 16.9 | −8.2 | 15.4 | <0.05 |
eeMETRIC | 27.0 | 0.90 | 0.8919 | 28.2 | 16.3 | 24.0 | <0.05 |
SSEBop | 40.0 | 0.80 | 0.9312 | 27.6 | 18.3 | 16.6 | <0.05 |
SIMS | −1.40 | 1.05 | 0.9224 | 21.9 | 3.9 | 23.3 | <0.05 |
PT-JPT | 10.0 | 0.87 | 0.9298 | 19.3 | −4.6 | 18.2 | <0.05 |
ALEXI/DisALEXI | 17.9 | 0.84 | 0.9040 | 22.1 | 1.0 | 21.1 | <0.05 |
Ensemble | 12.8 | 0.91 | 0.9575 | 15.10 | 2.90 | 14.7 | <0.05 |
Year 2019 | |||||||
geeSEBAL | −2.40 | 0.94 | 0.9726 | 15.1 | −9.1 | 12.5 | <0.05 |
eeMETRIC | 22.5 | 0.96 | 0.9379 | 25.1 | 18.1 | 18.8 | <0.05 |
SSEBop | 33.1 | 0.88 | 0.9546 | 26.0 | 20.8 | 14.7 | <0.05 |
SIMS | −1.70 | 1.10 | 0.9594 | 17.2 | 5.9 | 16.8 | <0.05 |
PT-JPT | 23.6 | 0.78 | 0.9483 | 20.0 | −0.08 | 13.8 | <0.05 |
ALEXI/DisALEXI | 35.7 | 0.51 | 0.7214 | 44.1 | −16.8 | 24.0 | <0.05 |
Ensemble | 14.8 | 0.91 | 0.9738 | 13.2 | 5.0 | 11.3 | <0.05 |
Year 2020 | |||||||
geeSEBAL | 16.0 | 0.89 | 0.9297 | 19.1 | 3.6 | 18.7 | <0.05 |
eeMETRIC | 46.0 | 0.86 | 0.8688 | 40.1 | 30.7 | 26.0 | <0.05 |
SSEBop | 44.3 | 0.89 | 0.9101 | 38.4 | 31.9 | 21.7 | <0.05 |
SIMS | 9.70 | 1.03 | 0.9330 | 23.6 | 12.9 | 21.5 | <0.05 |
PT-JPT | 24.6 | 0.79 | 0.9262 | 21.8 | 2.3 | 17.5 | <0.05 |
ALEXI/DisALEXI | 28.3 | 0.72 | 0.8727 | 28.0 | −2.0 | 21.4 | <0.05 |
Ensemble | 23.8 | 0.90 | 0.9345 | 22.7 | 13.3 | 18.7 | <0.05 |
Year 2021 | |||||||
geeSEBAL | 1.60 | 0.98 | 0.9450 | 15.2 | −0.26 | 16.9 | <0.05 |
eeMETRIC | 37.9 | 0.87 | 0.9037 | 31.7 | 24.6 | 19.9 | <0.05 |
SSEBop | 30.0 | 0.93 | 0.9085 | 30.0 | 22.8 | 20.6 | <0.05 |
SIMS | 3.40 | 1.04 | 0.9304 | 20.6 | 7.30 | 19.9 | <0.05 |
PT-JPT | 16.80 | 0.83 | 0.8815 | 22.3 | −0.37 | 21.3 | <0.05 |
ALEXI/DisALEXI | 19.80 | 0.86 | 0.9435 | 17.1 | 5.60 | 14.8 | <0.05 |
Ensemble | 15.70 | 0.94 | 0.9507 | 17.0 | 9.40 | 14.9 | <0.05 |
Model/Criteria | Number Observations, N (Months) | Intercept | Slope | R2 | RMSE | MBE | SEE | p−Value |
---|---|---|---|---|---|---|---|---|
geeSEBAL | 60 | 4.50 | 0.92 | 0.9449 | 17 | −4.2 | 16 | <0.05 |
35 | 13.32 | 0.87 | 0.8564 | 17 | −7 | 15 | <0.05 | |
eeMETRIC | 60 | 35.73 | 0.87 | 0.8906 | 32 | 22 | 21 | <0.05 |
35 | 58.32 | 0.74 | 0.6249 | 32 | 18 | 25 | <0.05 | |
SSEBop | 60 | 36.82 | 0.86 | 0.9122 | 30 | 22 | 19 | <0.05 |
35 | 57.15 | 0.75 | 0.6974 | 29 | 18 | 21 | <0.05 | |
SIMS | 60 | 3.89 | 1.03 | 0.9331 | 20 | 7 | 19 | <0.05 |
35 | 10.82 | 0.99 | 0.7970 | 23 | 10 | 22 | <0.05 | |
PT-JPT | 60 | 19.01 | 0.81 | 0.9203 | 21 | −1.1 | 17 | <0.05 |
35 | 23.62 | 0.79 | 0.8068 | 21 | −10 | 17 | <0.05 | |
ALEXI/DisALEX | 60 | 24.31 | 0.75 | 0.8430 | 28 | −3 | 23 | <0.05 |
35 | 53.53 | 0.58 | 0.4365 | 35 | −13 | 28 | <0.05 | |
Ensemble | 60 | 17.43 | 0.90 | 0.9477 | 17 | 7 | 15 | <0.05 |
35 | 29.37 | 0.83 | 0.8234 | 18 | 3 | 17 | <0.05 |
References
- U.S. Department of Agriculture–National Agricultural Statistics Service (NASS) New Mexico Field Office. 2018; Agricultural Statistics. Available online: https://www.nass.usda.gov/Statistics_by_State/New_Mexico/Publications/Annual_Statistical_Bulletin/2018/2018-NM-Ag-Statistics.pdf (accessed on 22 November 2022).
- U.S. Department of Agriculture–National Agricultural Statistics Service (NASS) New Mexico Field Office. 2020; Agricultural Statistics. Available online: https://www.nass.usda.gov/Statistics_by_State/New_Mexico/Publications/Annual_Statistical_Bulletin/2020/2020-NM-Ag-Statistics.pdf (accessed on 22 November 2022).
- U.S. Department of Agriculture–National Agricultural Statistics Service (NASS). 2017; Agricultural Statistics. Available online: https://www.nass.usda.gov/Statistics_by_State/New_Mexico/Publications/Annual_Statistical_Bulletin/2017/2017-NM-AG-Statistics.pdf (accessed on 22 November 2022).
- U.S. Department of Agriculture–National Agricultural Statistics Service (NASS) New Mexico Field Office. 2019; Agricultural Statistics. Available online: https://www.nass.usda.gov/Statistics_by_State/New_Mexico/Publications/Annual_Statistical_Bulletin/2019/2019-NM-Ag-Statistics.pdf (accessed on 22 November 2022).
- U.S. Department of Agriculture–National Agricultural Statistics Service (NASS)-Crop Data Layer-CropScape. 2021. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 29 November 2022).
- Sammis, T.W.; Mexal, J.G.; Miller, D. Evapotranspiration of Flood-Irrigated Pecans. Agric. Water Manag. 2004, 69, 179–190. [Google Scholar] [CrossRef]
- Miyamoto, S. Consumptive water use of irrigated pecans. J. Am. Soc. Hortic. Sci. 1983, 108, 676–681. [Google Scholar] [CrossRef]
- Samani, Z.; Bawazir, A.S.; Bleiweiss, M.; Skaggs, R.; Longworth, J.; Tran, V.D.; Pinon, A. Using remote sensing to evaluate the spatial variability of evapotranspiration and crop coefficient in the lower Rio Grande Valley, New Mexico. Irrig. Sci. 2009, 28, 93–100. [Google Scholar] [CrossRef]
- Kallestad, J.C.; Sammis, T.W.; Mexal, J.G.; White, J. Monitoring and Management of Pecan Orchard Irrigation: A Case Study. Horttechnology-Alex. Va- 2006, 16, 667–673. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Wagle, P.; Skaggs, T.H.; Gowda, P.H.; Northup, B.K.; Neel, J.P.S. Flux Variance Similarity-Based Partitioning of Evapotranspiration over a Rainfed Alfalfa Field Using High Frequency Eddy Covariance Data. Agric. For. Meteorol. 2020, 285–286, 107907. [Google Scholar] [CrossRef]
- French, A.; Hunsaker, D.; Bounoua, L.; Karnieli, A.; Luckett, W.; Strand, R. Remote Sensing of Evapotranspiration over the Central Arizona Irrigation and Drainage District, USA. Agronomy 2018, 8, 278. [Google Scholar] [CrossRef]
- Bawazir, A.S.; Luthy, R.; King, J.P.; Tanzy, B.F.; Solis, J. Assessment of the Crop Coefficient for Saltgrass under Native Riparian Field Conditions in the Desert Southwest: Crop coefficient of saltgrass under native field conditions. Hydrol. Process. 2014, 28, 6163–6171. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; Van der Wal, T. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL).: Part 2: Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance. Phys. Chem. Earth Part B 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A Climatological Study of Evapotranspiration and Moisture Stress across the Continental United States Based on Thermal Remote Sensing: 1. Model Formulation. J. Geophys. Res. 2007, 112, 2006JD007506. [Google Scholar] [CrossRef]
- Anderson, M.; Gao, F.; Knipper, K.; Hain, C.; Dulaney, W.; Baldocchi, D.; Eichelmann, E.; Hemes, K.; Yang, Y.; Medellin-Azuara, J.; et al. Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sens. 2018, 10, 889. [Google Scholar] [CrossRef]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S.; Kayser, R.H.B.; Kich, E.D.M.; Da Rocha, H.R.; Neale, C.M.U. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef]
- Senay, G.B. Satellite Psychrometric Formulation of the Operational Simplified Surface Energy Balance (SSEBop) Model for Quantifying and Mapping Evapotranspiration. Appl. Eng. Agric. 2018, 34, 555–566. [Google Scholar] [CrossRef]
- Melton, F.S.; Johnson, L.F.; Lund, C.P.; Pierce, L.L.; Michaelis, A.R.; Hiatt, S.H.; Guzman, A.; Adhikari, D.D.; Purdy, A.J.; Rosevelt, C.; et al. Satellite Irrigation Management Support with the Terrestrial Observation and Prediction System: A Framework for Integration of Satellite and Surface Observations to Support Improvements in Agricultural Water Resource Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.; Allen, R. Prediction of Crop Coefficients from Fraction of Ground Cover and Height. Background and Validation Using Ground and Remote Sensing Data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Hart, Q.J.; Brugnach, M.; Temesgen, B.; Rueda, C.; Ustin, S.L.; Frame, K. Daily Reference Evapotranspiration for California Using Satellite Imagery and Weather Station Measurement Interpolation. Civ. Eng. Environ. Syst. 2009, 26, 19–33. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates; Wageningen University and Research: Wageningen, The Netherlands, 1995. [Google Scholar]
- Trezza, R. Evapotranspiration Using a Satellite-Based Surface Energy Balance with Standardized Ground Control; Utah State University: Cash, UT, USA, 2002. [Google Scholar]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. Operational Aspects of Satellite-Based Energy Balance Models for Irrigated Crops in the Semi-Arid US. Irrig. Drain. Syst. 2005, 19, 355–376. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, B.B.D.; Santos, C.A.C.D.; Bezerra, J.R.C. Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of SEBAL and SSEB Approaches. Adv. Remote. Sens. 2015, 4, 234–247. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) Modeling Schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Mokhtari, M.; Busu, I.; Deilami, K. Comparison of SEBAL and Metric-Based Evapotranspiration Models in a Semi-Arid Region. Asian Assoc. Remote Sens. 2011, 3, 2185–2191. [Google Scholar]
- Singh, R.K.; Senay, G.B. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States. Water 2015, 8, 9. [Google Scholar] [CrossRef]
- Genanu, M.; Alamirew, T.; Senay, G.; Gebremichael, M. Remote Sensing Based Estimation of Evapo-Transpiration Using Selected Algorithms: The Case of Wonji Shoa Sugar Cane Estate, Ethiopia. J. Environ. Earth Sci. 2017, 7. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Mkhwanazi, M.M.; Chavez, J.L. Using METRIC to estimate surface energy fluxes over an alfalfa field in Eastern Colorado. Hydrol. Days. 2012, 7, 90–98. [Google Scholar]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET Mapping for Agricultural Water Management: Present Status and Challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of Actual Evapotranspiration along the Middle Rio Grande of New Mexico Using MODIS and Landsat Imagery with the METRIC Model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Patil, V.C. Performance of the METRIC Model in Estimating Evapotranspiration Fluxes over an Irrigated Field in Saudi Arabia Using Landsat-8 Images. Hydrol. Earth Syst. Sci. 2017, 21, 6135–6151. [Google Scholar] [CrossRef]
- Tasumi, M. Estimating Evapotranspiration Using METRIC Model and Landsat Data for Better Understandings of Regional Hydrology in the Western Urmia Lake Basin. Agric. Water Manag. 2019, 226, 105805. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A Comprehensive Evaluation of Two MODIS Evapotranspiration Products over the Conterminous United States: Using Point and Gridded FLUXNET and Water Balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Chen, M.; Senay, G.B.; Singh, R.K.; Verdin, J.P. Uncertainty Analysis of the Operational Simplified Surface Energy Balance (SSEBop) Model at Multiple Flux Tower Sites. J. Hydrol. 2016, 536, 384–399. [Google Scholar] [CrossRef]
- Dias Lopes, J.; Neiva Rodrigues, L.; Acioli Imbuzeiro, H.M.; Falco Pruski, F. Performance of SSEBop Model for Estimating Wheat Actual Evapotranspiration in the Brazilian Savannah Region. Int. J. Remote Sens. 2019, 40, 6930–6947. [Google Scholar] [CrossRef]
- Bawa, A.; Senay, G.B.; Kumar, S. Regional Crop Water Use Assessment Using Landsat-derived Evapotranspiration. Hydrol. Process. 2021, 35, e14015. [Google Scholar] [CrossRef]
- Mukherjee, J.; Sharma, A.; Dhakar, R.; Sehgal, V.; Chakraborty, D.; Das, D. Estimation and Validation of Actual Evapotranspiration (ET a) of Maize Wheat Cropping System Using SSEBop Model Over IARI Research Farm, New Delhi, India. J. Indian. Soc. Remote Sen. 2021, 49, 1823–1837. [Google Scholar] [CrossRef]
- Trout, T.J.; Johnson, L.F.; Gartung, J. Remote Sensing of Canopy Cover in Horticultural Crops. HortScience 2008, 43, 333–337. [Google Scholar] [CrossRef]
- Allen, R.B.; Pereira, L.S.; Raes, D.; Smith, M.S. Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrig. Drain. Pap. 1998, 56, 300. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from a fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Melton, F.; Johnson, L.; Guzman, A.; Post, K.; Wang, T.; Hang, M.; Zaragosa, I.; Temesgen, B.; Trezza, R.; Cahn, M. The Satellite Irrigation Management Support (SIMS) System: Satellite Mapping of Crop Coefficients to Support Advances in Irrigation Management in California. Remote Sens. Environ. 2020. submitted. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 Model and Ground-Based Remote Sensing to Estimate Water Consumptions of Wheat Crops in a Semi-Arid Region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef]
- Wang, T.; Melton, F.S.; Pôças, I.; Johnson, L.F.; Thao, T.; Post, K.; Cassel-Sharma, F. Evaluation of Crop Coefficient and Evapotranspiration Data for Sugar Beets from Landsat Surface Reflectances Using Micrometeorological Measurements and Weighing Lysimetry. Agric. Water Manag. 2021, 244, 106533. [Google Scholar] [CrossRef]
- Kahler, D.M.; Brutsaert, W. Complementary Relationship between Daily Evaporation in the Environment and Pan Evaporation: Daily and pan evaporation. Water Resour. Res. 2006, 42, W05413. [Google Scholar] [CrossRef]
- Szilagyi, J.; Jozsa, J. New Findings about the Complementary Relationship-Based Evaporation Estimation Methods. J. Hydrol. 2008, 354, 171–186. [Google Scholar] [CrossRef]
- Huntington, J.L.; Szilagyi, J.; Tyler, S.W.; Pohll, G.M. Evaluating the Complementary Relationship for Estimating Evapotranspiration from Arid Shrublands: Arid shrubland complementary. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Wea. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. A 1948, 193, 120–145. [CrossRef] [PubMed]
- Viswanadham, Y.; Silva Filho, V.P.; André, R.G.B. The Priestley-Taylor Parameter α for the Amazon Forest. For. Ecol. Manag. 1991, 38, 211–225. [Google Scholar] [CrossRef]
- Engstrom, R.N.; Hope, A.S.; Stow, D.A.; Vourlitis, G.L.; Oechel, W.C. Priestley-taylor alpha coefficient: Variability and relationship to ndvi in arctic tundra landscapes. J. Am. Water Resour. Assoc. 2002, 38, 1647–1659. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F.; Cong, Z. Variability of Complementary Relationship and Its Mechanism on Different Time Scales. Sci. China Technol. Sci. 2009, 52, 1059–1067. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A. Treatment of Anchor Pixels in the METRIC Model for Improved Estimation of Sensible and Latent Heat Fluxes. Hydrol. Sci. J. 2011, 56, 895–906. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Assessment of the Priestley-Taylor Coefficient and a Modified Potential Evapotranspiration Model. Smart Agric. Technol. 2023, 3, 100075. [Google Scholar] [CrossRef]
- McAneney, K.J.; Itier, B. Operational Limits to the Priestley-Taylor Formula. Irrig. Sci. 1996, 17, 37–43. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Norman, J.M.; Colaizzi, P.D.; Howell, T.A.; Prueger, J.H.; Meyers, T.P.; Wilson, T.B. Application of the Priestley–Taylor Approach in a Two-Source Surface Energy Balance Model. J. Hydrometeorol. 2010, 11, 185–198. [Google Scholar] [CrossRef]
- Brutsaert, W.; Stricker, H. An Advection-aridity Approach to Estimate Actual Regional Evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote Sensing of Surface Energy Fluxes at 101-m Pixel Resolutions: Remote sensing of surface energy fluxes. Water Resour. Res. 2003, 39, 1221. [Google Scholar] [CrossRef]
- Anderson, M. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperatures for Partial Canopy Cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces. Agron. J. 2000, 92, 847–854. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales. J. Hydrometeor 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Anderson, M.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A Thermal-Based Remote Sensing Technique for Routine Mapping of Land-Surface Carbon, Water and Energy Fluxes from Field to Regional Scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Hain, C.; Prueger, J.H.; Evett, S.; Colaizzi, P.; Howell, T.; Chávez, J.L. Mapping Daily Evapotranspiration at Landsat Spatial Scales during the BEAREX’08 Field Campaign. Adv. Water Resour. 2012, 50, 162–177. [Google Scholar] [CrossRef]
- Hampel, F.R. The Influence Curve and Its Role in Robust Estimation. J. Am. Stat. Assoc. 1974, 69, 383–393. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Huntington, J.L.; Pearson, C.; Minor, B.; Volk, J.; Morton, C.; Melton, F.; Allen, R. Appendix G: Upper Colorado River Basin OpenET Intercomparison Summary; U.S. Bureau of Reclamation: Washington, DC, USA, 2022. [Google Scholar]
- Thompson, P.D. How to Improve Accuracy by Combining Independent Forecasts. Mon. Wea. Rev. 1977, 105, 228–229. [Google Scholar] [CrossRef]
- Kirtman, B.P.; Min, D.; Infanti, J.M.; Kinter, J.L.; Paolino, D.A.; Zhang, Q.; Van Den Dool, H.; Saha, S.; Mendez, M.P.; Becker, E.; et al. The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction. Bull. Amer. Meteor. Soc. 2014, 95, 585–601. [Google Scholar] [CrossRef]
- Arsenault, R.; Gatien, P.; Renaud, B.; Brissette, F.; Martel, J.-L. A Comparative Analysis of 9 Multi-Model Averaging Approaches in Hydrological Continuous Streamflow Simulation. J. Hydrol. 2015, 529, 754–767. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a Critical Data Gap in Water Management for the Western United States. J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Reveles, A. Evapotranspiration of Mature Pecan Trees. Unpublished. Master’s Thesis, New Mexico State University, Las Cruces, NM, USA, 2005. [Google Scholar]
- Bulloch, H.E.; Neher, R.E. Soil Survey of Dona Ana County Area, New Mexico; U.S. Government Printing Office: Washington, DC, USA, 1980. [Google Scholar]
- LaRock, D.R.; Ellington, J.J. An integrated pest management approach, emphasizing biological control, for pecan aphids. Southwest. Entomol. 1996, 21, 153–166. [Google Scholar]
- Herrera, F.; Martinez, L. A Model Based on Linguistic 2-Tuples for Dealing with Multigranular Hierarchical Linguistic Contexts in Multi-Expert Decision-Making. IEEE Trans. Syst. Man. Cybern. B 2001, 31, 227–234. [Google Scholar] [CrossRef]
- Malm, N.R. Climate Guide, Las Cruces, 1892–2000; New Mexico State University, Agricultural Experiment Station: Las Cruces, MX, USA, 2003. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements. FAO Irrigation and Drainage Paper24; U.N. Food and Agricluture Organization: Rome, Italy, 1977. [Google Scholar]
- ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation. In ASCE-EWRI Standardization of Reference Evapotranspiration Task Committee Report; ASCE: Reston, VA, USA, 2005; p. 216. [Google Scholar]
- De Oliveira Costa, J.; José, J.V.; Wolff, W.; De Oliveira, N.P.R.; Oliveira, R.C.; Ribeiro, N.L.; Coelho, R.D.; Da Silva, T.J.A.; Bonfim-Silva, E.M.; Schlichting, A.F. Spatial Variability Quantification of Maize Water Consumption Based on Google EEflux Tool. Agric. Water Manag. 2020, 232, 106037. [Google Scholar] [CrossRef]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of Five Surface Energy Balance Models for Estimating Daily Evapotranspiration in High Biomass Sorghum. ISPRS J. Photogramm. 2017, 128, 192–203. [Google Scholar] [CrossRef]
- Bambach, N.; Kustas, W.; Alfieri, J.; Prueger, J.; Hipps, L.; McKee, L.; Castro, S.; Volk, J.; Alsina, M.; McElrone, A. Evapotranspiration Uncertainty at Micrometeorological Scales: The Impact of the Eddy Covariance Energy Imbalance and Correction Methods. Irrig. Sci. 2022, 40, 445–461. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A. Representativeness of Eddy-Covariance Flux Footprints for Areas Surrounding AmeriFlux Sites. Agric. For. Meteorol. 2021, 301, 108350. [Google Scholar] [CrossRef]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; McGwire, K.C.; Bassett, S.D. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Liaqat, U.W.; Choi, M. Accuracy Comparison of Remotely Sensed Evapotranspiration Products and Their Associated Water Stress Footprints under Different Land Cover Types in Korean Peninsula. J. Clean. Prod. 2017, 155, 93–104. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B. Assessing the Accuracy of OpenET Satellite-Based Evapotranspiration Data to Support Water Resource and Land Management Applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawalbeh, Z.M.; Bawazir, A.S.; Fernald, A.; Sabie, R.; Heerema, R.J. Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico. Remote Sens. 2024, 16, 1429. https://doi.org/10.3390/rs16081429
Tawalbeh ZM, Bawazir AS, Fernald A, Sabie R, Heerema RJ. Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico. Remote Sensing. 2024; 16(8):1429. https://doi.org/10.3390/rs16081429
Chicago/Turabian StyleTawalbeh, Zada M., A. Salim Bawazir, Alexander Fernald, Robert Sabie, and Richard J. Heerema. 2024. "Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico" Remote Sensing 16, no. 8: 1429. https://doi.org/10.3390/rs16081429
APA StyleTawalbeh, Z. M., Bawazir, A. S., Fernald, A., Sabie, R., & Heerema, R. J. (2024). Assessing Satellite-Derived OpenET Platform Evapotranspiration of Mature Pecan Orchard in the Mesilla Valley, New Mexico. Remote Sensing, 16(8), 1429. https://doi.org/10.3390/rs16081429