Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chosen Indicators for the Farmland Productivity Assessment System
2.3. Sources and Pre-Processing of Indicator Data
2.4. Farmland Productivity Assessment Model
2.5. Spatial Analysis of Farmland Productivity
3. Results and Analysis
3.1. Construction of FPCI
3.2. Spatial Distribution of FPCI at Various Scales
3.3. Spatial Correlation of FPCI at the Raster Scale
3.4. Robustness of Results
4. Discussion
4.1. Rationalization of the Farmland Productivity Assessment System
4.2. Spatial Differentiation in Farmland Productivity Assessment
4.3. Implications of Spatial Autocorrelation Findings
4.4. Study Limitations and Future Directions
5. Conclusions and Potential Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Shang, G.; Zhang, A. An evaluation on farmland ecological service in Jianghan Plain, China--from farmers’ heterogeneous preference perspective. Ecol. Indic. 2022, 136, 108665. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- United Nations. Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa; Interim Secretariat CCD: Geneva, Switzerland, 1995; pp. 1–13. [Google Scholar]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Pandit, R.; Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; Ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; p. 44. [Google Scholar]
- Cao, T.; Li, J. A Review of “Land Degradation” Studies. Sustain. Dev. 2021, 6, 825–829. [Google Scholar] [CrossRef]
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- van der Esch, S. The Global Potential for Land Restoration: Scenarios for the Global Land Outlook 2; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2017; pp. 15–22. [Google Scholar]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations; Lund University Centre for Sustainability Studies: Lund, Sweden, 2014; pp. 11–17. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, D.; Chang, X.; Lin, Z. A new grading system for evaluating China’s cultivated land quality. Land Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Shi, M.; Hu, S.; Xu, D. Urban blue–green space landscape ecological health assessment based on the integration of pattern, process, function and sustainability. Sci. Rep. 2022, 12, 7707. [Google Scholar] [CrossRef]
- Fu, G.; Bai, W. Advances and prospects of evaluating cultivated land quality. Resour. Sci. 2015, 37, 226–236. [Google Scholar]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P. A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Hoobler, B.M.; Vance, G.F.; Hamerlinck, J.D.; Munn, L.C.; Hayward, J.A. Applications of land evaluation and site assessment (LESA) and a geographic information system (GIS) in East Park County, Wyoming. J. Soil Water Conserv. 2003, 58, 105. [Google Scholar]
- Svarstad, H.; Petersen, L.K.; Rothman, D.; Siepel, H.; Wätzold, F. Discursive biases of the environmental research framework DPSIR. Land Use Pol. 2008, 25, 116–125. [Google Scholar] [CrossRef]
- Hanauer, T.; Pohlenz, C.; Kalandadze, B.; Urushadze, T.; Felix-Henningsen, P. Soil distribution and soil properties in the subalpine region of Kazbegi; Greater Caucasus; Georgia: Soil quality rating of agricultural soils. Ann. Agrar. Sci. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Wu, F.; Mo, C.; Dai, X.; Li, H. Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale. Int. J. Environ. Res. Public Health 2022, 19, 12266. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Duan, W.; Fleskens, L.; Li, M.; Hao, J. Study on evaluation of regional cultivated land quality based on resource-asset-capital attributes and its spatial mechanism. Appl. Geogr. 2020, 125, 102284. [Google Scholar] [CrossRef]
- Dubovyk, O. The role of Remote Sensing in land degradation assessments: Opportunities and challenges. Eur. J. Remote Sens. 2017, 50, 601–613. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef]
- Ayele, G.T.; Tebeje, A.K.; Demissie, S.S.; Belete, M.A.; Jemberrie, M.A.; Teshome, W.M.; Mengistu, D.T.; Teshale, E.Z. Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia. Air Soil Water Res. 2018, 11, 1178622117751603. [Google Scholar] [CrossRef]
- Rotllan-Puig, X.; Ivits, E.; Cherlet, M. LPDynR: A new tool to calculate the land productivity dynamics indicator. Ecol. Indic. 2021, 133, 108386. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Chen, X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur. 2015, 7, 33–43. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.; Săvulescu, I.; Birsan, M.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, M.; De Felice, M.; De Cecco, L.; Borfecchia, F. Remote sensing for monitoring and mapping Land Productivity in Italy: A rapid assessment methodology. Catena 2020, 188, 104375. [Google Scholar] [CrossRef]
- Montfort, F.; Bégué, A.; Leroux, L.; Blanc, L.; Gond, V.; Cambule, A.H.; Remane, I.A.D.; Grinand, C. From land productivity trends to land degradation assessment in Mozambique: Effects of climate, human activities and stakeholder definitions. Land Degrad. Dev. 2021, 32, 49–65. [Google Scholar] [CrossRef]
- Eskandari Dameneh, H.; Gholami, H.; Telfer, M.W.; Comino, J.R.; Collins, A.L.; Jansen, J.D. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Sci. Rep. 2021, 11, 20548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Li, Y.; Zhang, J.; Zhang, F. Advances in the Indicator System and Evaluation Approaches of Soil Health. Acta Pedol. Sin. 2022, 59, 603–616. [Google Scholar]
- Han, X.; Li, N. Research Progress of Black Soil in Northeast China. Sci. Geogr. Sin. 2018, 7, 1032–1041. [Google Scholar]
- Sorokin, A.; Owens, P.; Láng, V.; Jiang, Z.; Michéli, E.; Krasilnikov, P. “Black soils” in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: Quantitative correlation and implications for pedodiversity assessment. Catena 2021, 196, 104824. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637–638, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
- Liu, B.; Ganlin, Z.; Xie, Y.; Shen, B.; Gu, Z.; Ding, Y. Delineating the black soil region and typical black soil region of northeastern China. Chin. Sci. Bull. 2021, 66, 96–106. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Bastida, F.; Domínguez, S.G.; Toledo, D.M.; Faz, A. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 2015, 1, 173–185. [Google Scholar] [CrossRef]
- Du, G.; Liu, Y.; Yu, F.; Liu, M.; Zheng, H. Evolution of concepts of cultivated land quality and recognition. Trans. Chin. Soc. Agric. Eng. 2016, 14, 243–249. [Google Scholar]
- Wang, J.; Xu, X.; Pei, Y.; Li, S. Current Situations of Black Soil Quality and Facing Opportunities and Challenges in Northeast China. Chin. J. Soil Sci. 2021, 3, 695–701. [Google Scholar]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Pol. 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y. Farmers’ Cognition and Behavioral Response towards Cultivated Land Quality Protection in Northeast China. Sustainability 2018, 10, 1905. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common international classification of ecosystem services (CICES, Version 4.1). Eur. Environ. Agency 2012, 33, 107. [Google Scholar]
- de Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Kaffka, S.R.; Langeveld, J.W.A.H. A landscape perspective on sustainability of agricultural systems. Landsc. Ecol. 2013, 28, 1111–1123. [Google Scholar] [CrossRef]
- Iniesta-Arandia, I.; García-Llorente, M.; Aguilera, P.A.; Montes, C.; Martín-López, B. Socio-cultural valuation of ecosystem services: Uncovering the links between values, drivers of change, and human well-being. Ecol. Econ. 2014, 108, 36–48. [Google Scholar] [CrossRef]
- Qi, X.; Fu, Y.; Wang, R.Y.; Ng, C.N.; Dang, H.; He, Y. Improving the sustainability of agricultural land use: An integrated framework for the conflict between food security and environmental deterioration. Appl. Geogr. 2018, 90, 214–223. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Cultivated land use efficiency and its driving factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tian, H.; Zhang, J.; Lu, S.; Xie, Z.; Shen, W.; Zheng, Z.; Li, M.; Rong, P.; Qin, Y. Detection of spatiotemporal changes in ecological quality in the Chinese mainland: Trends and attributes. Sci. Total Environ. 2023, 884, 163791. [Google Scholar]
- Li, H.; Huang, J.; Liang, Y.; Wang, H.; Zhang, Y. Evaluating the quality of ecological environment in Wuhan based on remote sensing ecological index. J. Yunnan Univ. Nat. Sci. Ed. 2020, 1, 81–90. [Google Scholar]
- Wang, P.; Song, G. Land use pattern change and influential factors analysis of Songnen Plain in 1979–2015. Trans. Chin. Soc. Agric. Eng. 2018, 2, 256–264. [Google Scholar]
- Bai, Z.; Han, L.; Jiang, X.; Liu, M.; Li, L.; Liu, H.; Lu, J. Spatiotemporal evolution of desertification based on integrated remote sensing indices in Duolun County, Inner Mongolia. Ecol. Inform. 2022, 70, 101750. [Google Scholar]
- Chen, F.; Kissel, D.E.; West, L.T.; Adkins, W. Field-Scale Mapping of Surface Soil Organic Carbon Using Remotely Sensed Imagery. Soil Sci. Soc. Am. J. 2000, 64, 746–753. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Li, X.; Xiao, P.; Jiang, J. Assessment of Cultivated Land Productivity and Its Spatial Differentiation in Dongting Lake Region: A Case Study of Yuanjiang City, Hunan Province. Sustainability 2018, 10, 3616. [Google Scholar] [CrossRef]
- Zahedifar, M. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena 2023, 222, 106807. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Zhai, J.; Feng, T.; Lei, Y.; Li, S.; Liu, Y.; Liu, Y.; Hu, Z.; Zhu, K.; et al. Assessing progress toward China’s subnational sustainable development by Region Sustainable Development Index. Sustain. Horiz. 2024, 11, 100099. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.; Chen, Z.; Miao, Y. The spatiotemporal evolution and influencing factors of urban green innovation in China. Sci. Total Environ. 2023, 857, 159426. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on cultivated land quality evaluation from the perspective of farmland ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Yu, G.; Wang, H. Construction of Innovation Ecosystem of Beijing Huairou Science City from the Perspective of Structuralism. Sci. Technol. Ind. 2022, 1, 203–210. [Google Scholar]
Dimensions | References | Indicators | Data Sources or Formulas | Range |
---|---|---|---|---|
PCI | Zhang et al. [32], 2022 Montfort et al. [30], 2021 | TEM PRE | Data Center for Resources and Environmental Sciences (https://www.resdc.cn/ (accessed on 11 December 2022)) | - |
- | ||||
SLO CUR | Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 29 November 2022)) | - | ||
- | ||||
POP | LandScan Global (https://landscan.ornl.gov/ (accessed on 15 December 2022)) | - | ||
SPI | Wang et al. [52], 2018 Bai et al. [53] 2022 Chen et al. [54], 2000 | RVI | [0, 30] | |
DVI | - | |||
MSAVI | [−1, 1] | |||
SOCI | [−1, 1] | |||
RSEI | Li et al. [50], 2023 Li et al. [51], 2020 | WET | [−1, 1] | |
NDVI | [−1, 1] | |||
NDBSI | [−1, 1] | |||
LST | - |
Components | Initial Eigenvalue | Percent of Variance (Unrotated) (%) | Percent of Variance (Rotated) (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Eigenvalue | Percent of Variance (%) | Cumulative Percent of Variance (%) | Eigenvalue | Percent of Variance (%) | Cumulative Percent of Variance (%) | Eigenvalue | Percent of Variance (%) | Cumulative Percent of Variance (%) | |
1 | 6.991 | 53.780 | 53.780 | 6.991 | 53.780 | 53.780 | 6.625 | 50.962 | 50.962 |
2 | 2.085 | 16.042 | 69.822 | 2.085 | 16.042 | 69.822 | 2.166 | 16.663 | 67.625 |
3 | 1.068 | 8.212 | 78.034 | 1.068 | 8.212 | 78.034 | 1.334 | 10.263 | 77.888 |
4 | 1.003 | 7.561 | 85.595 | 1.003 | 7.561 | 83.595 | 1.081 | 7.707 | 83.595 |
5 | 0.785 | 6.041 | 91.636 | - | - | - | - | - | - |
6 | 0.661 | 5.082 | 96.718 | - | - | - | - | - | - |
7 | 0.301 | 2.316 | 99.034 | - | - | - | - | - | - |
8 | 0.074 | 0.570 | 99.604 | - | - | - | - | - | - |
9 | 0.040 | 0.308 | 99.912 | - | - | - | - | - | - |
10 | 0.007 | 0.057 | 99.969 | - | - | - | - | - | - |
11 | 0.003 | 0.021 | 99.990 | - | - | - | - | - | - |
12 | 0.001 | 0.007 | 99.997 | - | - | - | - | - | - |
13 | 0.000 | 0.003 | 100.00 | - | - | - | - | - | - |
Indicators | 1st PC | 2nd PC | 3rd PC | 4th PC | |
---|---|---|---|---|---|
Factor loading values | SOCI | 0.991 | −0.101 | −0.055 | 0.021 |
DVI | 0.985 | −0.102 | −0.056 | 0.022 | |
WET | 0.979 | −0.096 | −0.062 | 0.019 | |
NDBSI | 0.978 | −0.104 | −0.066 | 0.026 | |
NDVI | 0.977 | −0.103 | −0.054 | 0.025 | |
MSAVI | 0.975 | −0.1 | −0.053 | 0.024 | |
RVI | 0.88 | −0.069 | −0.046 | 0.005 | |
CUR | 0.484 | 0.214 | 0.463 | −0.223 | |
TEM | 0.209 | 0.922 | −0.2 | 0.032 | |
PRE | 0.203 | 0.904 | −0.202 | 0.036 | |
LST | 0.24 | 0.515 | 0.118 | 0.02 | |
SLO | 0.255 | 0.19 | 0.742 | −0.355 | |
POP | 0.047 | 0.064 | 0.431 | 0.895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, C.; Wang, E.; Mao, X.; Liu, Y.; Hu, Z. Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China. Remote Sens. 2024, 16, 1435. https://doi.org/10.3390/rs16081435
Liu Y, Wang C, Wang E, Mao X, Liu Y, Hu Z. Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China. Remote Sensing. 2024; 16(8):1435. https://doi.org/10.3390/rs16081435
Chicago/Turabian StyleLiu, Yuwen, Chengyuan Wang, Enheng Wang, Xuegang Mao, Yuan Liu, and Zhibo Hu. 2024. "Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China" Remote Sensing 16, no. 8: 1435. https://doi.org/10.3390/rs16081435
APA StyleLiu, Y., Wang, C., Wang, E., Mao, X., Liu, Y., & Hu, Z. (2024). Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China. Remote Sensing, 16(8), 1435. https://doi.org/10.3390/rs16081435