Changes in Surface and Terrestrial Waters in the China–Pakistan Economic Corridor Due to Climate Change and Human Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. TWS Data and SWA
2.2.2. Climate Data
2.2.3. Socioeconomic Data
2.3. Statistical Analysis
- (1)
- Factor detector: A factor detector was utilized to detect the variables that influence the outcome of interest. Each factor’s impact is quantified using the q value.
- (2)
- Risk detector: The risk detector was utilized to determine if a notable contrast exists in the mean attribute value between two subregions, and the t-statistic was applied for testing.
- (3)
- Ecological detector: The ecological detector was utilized to assess the impact of two factors X1 and X2 on the spatial distribution of attribute Y, as determined by F statistic:
- (4)
- Interaction detector: Utilizing an interaction sensor enabled the identification of interactions between disparate variables (e.g., X1 and X2). Specifically, it assessed if the combined impact of X1 and X2 would enhance or diminish the predictive capability of the attribute Y, or if the effects of these variables on Y were unrelated. The relationship between the two factors (q(X1∩X2)) can be categorized as shown in Figure 2.
3. Results
3.1. The Spatial Changes in the SWA and TWS
3.2. The Relationship between the SWA and TWS
3.3. Relationship between TWS and the Driving Factors in the CPEC
3.4. Contribution of Driving Factors to TWS in the CPEC
4. Discussion
4.1. The Impact of Dam Construction on TWS and SWA
4.2. Impact of Dynamics in Water Resources on Population and Social Economy
4.3. Water Crisis in the CPEC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Li, B. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, Y.; Cui, Y.; Dong, J.; Wang, X.; Zhao, G.; Zou, Z.; Xiao, X. Rebound of surface and terrestrial water resources in Mongolian plateau following sustained depletion. Ecol. Indic. 2023, 156, 111193. [Google Scholar] [CrossRef]
- Burlacu, S.; Vasilache, P.C.; Velicu, E.R.; Curea, Ș.-C.; Margina, O. Management of water resources at global level. In Proceedings of the International Conference on Economics and Social Sciences, Singapore, 25–26 July 2020. [Google Scholar]
- Zhou, Y.; Dong, J.; Cui, Y.; Zhao, M.; Wang, X.; Tang, Q.; Zhang, Y.; Zhou, S.; Metternicht, G.; Zou, Z. Ecological restoration exacerbates the agriculture-induced water crisis in North China Region. Agric. For. Meteorol. 2023, 331, 109341. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Chen, Y. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Duan, W.; Nover, D.; Sahu, N.; Chen, Y. An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990–2019 and exploratory factor analyses. J. Hydrol. 2021, 593, 125905. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.; Jafari, M.; Lissner, T.K.; Stevens, N.; Tirado-von Der Pahlen, C. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef]
- Khandu; Forootan, E.; Schumacher, M.; Awange, J.L.; Mueller Schmied, H. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the G anges-B rahmaputra-M eghna River Basin. Water Resour. Res. 2016, 52, 2240–2258. [Google Scholar] [CrossRef]
- Ruan, H.; Yu, J.; Wang, P.; Wang, T. Increased crop water requirements have exacerbated water stress in the arid transboundary rivers of Central Asia. Sci. Total Environ. 2020, 713, 136585. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- kumar Nayan, N.; Das, A.; Mukerji, A.; Mazumder, T.; Bera, S. Spatio-temporal dynamics of water resources of Hyderabad Metropolitan Area and its relationship with urbanization. Land Use Policy 2020, 99, 105010. [Google Scholar] [CrossRef]
- An, L.; Wang, J.; Huang, J.; Pokhrel, Y.; Hugonnet, R.; Wada, Y.; Cáceres, D.; Müller Schmied, H.; Song, C.; Berthier, E. Divergent causes of terrestrial water storage decline between drylands and humid regions globally. Geophys. Res. Lett. 2021, 48, e2021GL095035. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2020, 4, 56–62. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Li, Y.; Tong, K. Changes in Terrestrial Water Storage During 2003–2014 and Possible Causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef]
- Humphrey, V.; Rodell, M.; Eicker, A. Using Satellite-Based Terrestrial Water Storage Data: A Review. Surv. Geophys. 2023, 44, 1489–1517. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Taheri Dehkordi, A.; Valadan Zoej, M.J.; Ghasemi, H.; Jafari, M.; Mehran, A. Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery. Remote Sens. 2022, 14, 4491. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Song, X.; Sun, W. Dynamic Monitoring of Surface Water Bodies and Their Influencing Factors in the Yellow River Basin. Remote Sens. 2023, 15, 5157. [Google Scholar] [CrossRef]
- Borja, S.; Kalantari, Z.; Destouni, G. Global Wetting by Seasonal Surface Water Over the Last Decades. Earth’s Future 2020, 8, e2019EF001449. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Mustafa, F.; Bu, L.; Xu, M.; Wang, Q.; Shahzaman, M.; Bilal, M.; Ullah, S.; Feng, Z. Monitoring of atmospheric carbon dioxide over Pakistan using satellite dataset. Remote Sens. 2022, 14, 5882. [Google Scholar] [CrossRef]
- Faiz, M.A.; Liu, D.; Tahir, A.A.; Li, H.; Fu, Q.; Adnan, M.; Zhang, L.; Naz, F. Comprehensive evaluation of 0.25° precipitation datasets combined with MOD10A2 snow cover data in the ice-dominated river basins of Pakistan. Atmos. Res. 2020, 231, 104653. [Google Scholar] [CrossRef]
- Ashiq, M.W.; Zhao, C.; Jian, N.; Akhtar, M. GIS-based high-resolution spatial interpolation of precipitation in mountain–plain areas of Upper Pakistan for regional climate change impact studies. Theor. Appl. Climatol. 2010, 99, 239–253. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Qi, P.; Huang, X.; Xu, Y.J.; Li, F.; Wu, Y.; Chang, Z.; Li, H.; Zhang, W.; Jiang, M.; Zhang, G. Divergent trends of water bodies and their driving factors in a high-latitude water tower, Changbai Mountain. J. Hydrol. 2021, 603, 127094. [Google Scholar] [CrossRef]
- Qian, A.; Yi, S.; Chang, L.; Sun, G.; Liu, X. Using GRACE Data to Study the Impact of Snow and Rainfall on Terrestrial Water Storage in Northeast China. Remote Sens. 2020, 12, 4166. [Google Scholar] [CrossRef]
- Busker, T.; Roo, A.D.; Gelati, E.; Schwatke, C.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Thorslund, J.; Vliet, M. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 2020, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Ishaque, W.; Mukhtar, M.; Tanvir, R. Pakistan’s water resource management: Ensuring water security for sustainable development. Front. Environ. Sci. 2023, 11, 1096747. [Google Scholar] [CrossRef]
- Tariq, A.; Qin, S. Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agric. Water Manag. 2023, 280, 108228. [Google Scholar] [CrossRef]
- Azam, A.; Shafique, M. Agriculture in Pakistan and its Impact on Economy. A Review. Int. J. Adv. Sci. Technol. 2017, 103, 47–60. [Google Scholar] [CrossRef]
- Siyal, A.W.; Gerbens-Leenes, P.W.; Nonhebel, S. Energy and carbon footprints for irrigation water in the lower Indus basin in Pakistan, comparing water supply by gravity fed canal networks and groundwater pumping. J. Clean. Prod. 2021, 286, 125489. [Google Scholar] [CrossRef]
- Dars, G.H.; Najafi, M.R.; Qureshi, A.L. Assessing the Impacts of Climate Change on Future Precipitation Trends Based on Downscaled CMIP5 Simulations Data. Mehran Univ. Res. J. Eng. Technol. 2017, 36, 385–394. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Beek Van, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Siddiqi, A.; Wescoat, J.L.; Muhammad, A. Socio-hydrological assessment of water security in canal irrigation systems: A conjoint quantitative analysis of equity and reliability. Water Secur. 2018, 4, 44–55. [Google Scholar] [CrossRef]
- Wescoat, J.L.; Siddiqi, A.; Muhammad, A. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan. Water Resour. Res. 2018, 54, 464–479. [Google Scholar] [CrossRef]
- Nabi, G.; Ali, M.; Khan, S.; Kumar, S. The crisis of water shortage and pollution in Pakistan: Risk to public health, biodiversity, and ecosystem. Environ. Sci. Pollut. Res. 2019, 26, 10443–10445. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- MacAllister, D.; Krishan, G.; Basharat, M.; Cuba, D.; MacDonald, A. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. 2022, 15, 390–396. [Google Scholar] [CrossRef]
- Mustafa, U.; Baig, M.B.; Straquadine, G.S. Impacts of Climate Change on Agricultural Sector of Pakistan: Status, Consequences, and Adoption Options. Emerg. Chall. Food Prod. Secur. Asia Middle East Afr. Clim. Risks Resour. Scarcity 2021, 2021, 43–64. [Google Scholar]
- Zeb, H.; Yaqub, A.; Ajab, H.; Zeb, I.; Khan, I. Effect of Climate Change and Human Activities on Surface and Ground Water Quality in Major Cities of Pakistan. Water 2023, 15, 2693. [Google Scholar] [CrossRef]
- Yasin, H.Q.; Breadsell, J.; Tahir, M.N. Climate-water governance: A systematic analysis of the water sector resilience and adaptation to combat climate change in Pakistan. Water Policy 2021, 23, 1–35. [Google Scholar] [CrossRef]
- Rehman, I.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.U.; Ullah, H. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
Year | Month | ||||||
---|---|---|---|---|---|---|---|
2002 | 1 | 2 | 3 | 6 | 7 | ||
2003 | 6 | ||||||
2011 | 1 | 6 | 12 | ||||
2012 | 5 | 10 | |||||
2013 | 3 | 8 | 9 | ||||
2014 | 2 | 7 | 12 | ||||
2015 | 5 | 6 | 10 | 11 | |||
2016 | 4 | 9 | 10 | ||||
2017 | 2 | 7 | 8 | 9 | 10 | 11 | 12 |
2018 | 1 | 2 | 3 | 4 | 5 | 8 | 9 |
Region | Dam Name | Construction Year | Dam Height | Area (km2) |
---|---|---|---|---|
FATA | Gomal Zam | 2013 | 133 | 35.97 |
Sindh | Darawat | 2013 | 46 | 8.93 |
Gilgit–Baltistan | Satpara | 2011 | 39 | 3.21 |
Balochistan | Mirani | 2007 | 39 | 62.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Wu, Y.; Huang, X.; Qi, P.; Yuan, Y.; Li, T.; Yu, T.; Wang, T.; Zhang, P.; Nzabarinda, V.; et al. Changes in Surface and Terrestrial Waters in the China–Pakistan Economic Corridor Due to Climate Change and Human Activities. Remote Sens. 2024, 16, 1437. https://doi.org/10.3390/rs16081437
Bao J, Wu Y, Huang X, Qi P, Yuan Y, Li T, Yu T, Wang T, Zhang P, Nzabarinda V, et al. Changes in Surface and Terrestrial Waters in the China–Pakistan Economic Corridor Due to Climate Change and Human Activities. Remote Sensing. 2024; 16(8):1437. https://doi.org/10.3390/rs16081437
Chicago/Turabian StyleBao, Jiayu, Yanfeng Wu, Xiaoran Huang, Peng Qi, Ye Yuan, Tao Li, Tao Yu, Ting Wang, Pengfei Zhang, Vincent Nzabarinda, and et al. 2024. "Changes in Surface and Terrestrial Waters in the China–Pakistan Economic Corridor Due to Climate Change and Human Activities" Remote Sensing 16, no. 8: 1437. https://doi.org/10.3390/rs16081437
APA StyleBao, J., Wu, Y., Huang, X., Qi, P., Yuan, Y., Li, T., Yu, T., Wang, T., Zhang, P., Nzabarinda, V., Naibi, S., Jin, J., Long, G., & Yang, S. (2024). Changes in Surface and Terrestrial Waters in the China–Pakistan Economic Corridor Due to Climate Change and Human Activities. Remote Sensing, 16(8), 1437. https://doi.org/10.3390/rs16081437