Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data
Abstract
:1. Introduction
2. Materials
2.1. MODIS Ice Thickness Charts
2.2. AMSR2 Radiometer Data
2.3. FY-3C MWRI Radiometer Data
2.4. ERA5 Data
2.5. Combination of and Data
2.6. Combination of and MODIS Ice Thickness Data
2.7. SMOS Ice Thickness Data
3. Methods
3.1. Atmospheric Correction
3.1.1. OSI SAF Sea Ice Data
3.1.2. Sea Ice Data by Mathew et al. [48]
3.1.3. Daily Surface Temperature Chart
3.1.4. FYI and MYI Fractions
3.1.5. Atmospheric Correction with FYI and MYI Data
3.2. Thin Ice Detection with AMRS2 or MWRI Data
4. Results
4.1. Thin Ice Detection—ATIDA2 for AMSR2
- Atmospheric correction of the data. OSI SAF correction with FYI and MYI data: pixel emissivity is a mixture of Mathew and according to daily FYI and MYI fractions from the NT SIC data. The MYI fraction is only allowed within a MYI mask. OSISAF and Mathew with the daily chart used;
- Thin ice detection with and
- scaling of and is conducted with
- Thick ice restoration with
4.2. Thin Ice Detection—MTIDA2 for MWRI
- Same atmospheric correction as for the AMSR2 data;
- Thin ice detection with and
- 3.
- Thick ice restoration with
4.3. Comparison of AMSR2 and MWRI Arctic Daily Thin Ice Charts
4.4. Comparison againts SMOS Sea Ice Thickness Chart
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaleschke, L.; Tian-Kunze, X.; Maaß, N.; Mäkynen, M.; Drusch, M. Sea Ice Thickness Retrieval from SMOS Brightness Temperatures during the Arctic Freeze-up Period. Geophys. Res. Lett. 2012, 39, L05501. [Google Scholar] [CrossRef]
- Kaleschke, L.; Tian-Kunze, X.; Maaß, N.; Beitsch, A.; Wernecke, A.; Miernecki, M.; Müller, G.; Fock, B.H.; Gierisch, A.M.U.; Schlünzen, K.H.; et al. SMOS Sea Ice Product: Operational Application and Validation in the Barents Sea Marginal Ice Zone. Remote Sens. Environ. 2016, 180, 264–273. [Google Scholar] [CrossRef]
- Huntemann, M.; Heygster, G.; Kaleschke, L.; Krumpen, T.; Mäkynen, M.; Drusch, M. Empirical Sea Ice Thickness Retrieval during the Freeze-up Period from SMOS High Incident Angle Observations. Cryosphere 2014, 8, 439–451. [Google Scholar] [CrossRef]
- Tian-Kunze, X.; Kaleschke, L.; Maaß, N.; Mäkynen, M.; Serra, N.; Drusch, M.; Krumpen, T. SMOS-Derived Thin Sea Ice Thickness: Algorithm Baseline, Product Specifications and Initial Verification. Cryosphere 2014, 8, 997–1018. [Google Scholar] [CrossRef]
- Martin, S.; Drucker, R.; Kwok, R.; Holt, B. Estimation of the Thin Ice Thickness and Heat Flux for the Chukchi Sea Alaskan Coast Polynya from Special Sensor Microwave/Imager Data, 1990–2001. J. Geophys. Res. Ocean. 2004, 109, C10012. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic Ocean. J. Atmos. Ocean. Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I. Mapping of Sea Ice Production in the Arctic Coastal Polynyas. J. Geophys. Res. Ocean. 2011, 116, C07030. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved Mapping of Sea Ice Production in the Arctic Ocean Using AMSR-E Thin Ice Thickness Algorithm. J. Geophys. Res. Ocean. 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Nihashi, S.; Iwamoto, K. Global View of Sea-Ice Production in Polynyas and Its Linkage to Dense/Bottom Water Formation. Geosci. Lett. 2016, 3, 13. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S. Estimation of Thin-Ice Thickness and Discrimination of Ice Type from AMSR-E Passive Microwave Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 263–276. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S. Mapping of Active Frazil for Antarctic Coastal Polynyas, with an Estimation of Sea-ice Production. Geophys. Res. Lett. 2021, 48, e2020GL091353. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I. Mapping of Active Frazil and Sea Ice Production in the Northern Hemisphere, with Comparison to the Southern Hemisphere. J. Geophys. Res. Ocean. 2022, 127, e2022JC018553. [Google Scholar] [CrossRef]
- Mäkynen, M.; Similä, M. AMSR2 Thin Ice Detection Algorithm for the Arctic Winter Conditions. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Hwang, B.J.; Ehn, J.K.; Barber, D.G.; Galley, R.; Grenfell, T.C. Investigations of Newly Formed Sea Ice in the Cape Bathurst Polynya: 2. Microwave Emission. J. Geophys. Res. Ocean. 2007, 112, C05003. [Google Scholar] [CrossRef]
- Naoki, K.; Ukita, J.; Nishio, F.; Nakayama, M.; Comiso, J.C.; Gasiewski, A. Thin Sea Ice Thickness as Inferred from Passive Microwave and in Situ Observations. J. Geophys. Res. Ocean. 2008, 113, C02S16. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Tamaru, N.; Kashiwase, H.; Nihashi, S.; Nakata, K.; Iwamoto, K. Estimation of Sea Ice Production in the Bering Sea from AMSR-E and AMSR2 Data, with Special Emphasis on the Anadyr Polynya. J. Geophys. Res. Ocean. 2020, 125, e2019JC016023. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Sea-Ice Production in Antarctic Coastal Polynyas Estimated from AMSR2 Data and Its Validation Using AMSR-E and SSM/I-SSMIS Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3912–3922. [Google Scholar] [CrossRef]
- Kashiwase, H.; Ohshima, K.I.; Fukamachi, Y.; Nihashi, S.; Tamura, T. Evaluation of AMSR-E Thin Ice Thickness Algorithm from a Mooring-Based Observation: How Can the Satellite Observe a Sea Ice Field with Nonuniform Thickness Distribution? J. Atmos. Ocean. Technol. 2019, 36, 1623–1641. [Google Scholar] [CrossRef]
- Markus, T.; Burns, B.A. A Method to Estimate Subpixel-Scale Coastal Polynyas with Satellite Passive Microwave Data. J. Geophys. Res. Ocean. 1995, 100, 4473–4487. [Google Scholar] [CrossRef]
- Hunewinkel, T.; Markus, T.; Heygster, G.C. Improved Determination of the Sea Ice Edge with SSM/I Data for Small-Scale Analyses. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1795–1808. [Google Scholar] [CrossRef]
- Röhrs, J.; Kaleschke, L.; Bröhan, D.; Siligam, P.K. An Algorithm to Detect Sea Ice Leads by Using AMSR-E Passive Microwave Imagery. Cryosphere 2012, 6, 343–352. [Google Scholar] [CrossRef]
- Mäkynen, M.; Similä, M. Thin Ice Detection in the Barents and Kara Seas Using AMSR2 High-Frequency Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7418–7437. [Google Scholar] [CrossRef]
- Maeda, T.; Taniguchi, Y.; Imaoka, K. GCOM-W1 AMSR2 Level 1R Product: Dataset of Brightness Temperature Modified Using the Antenna Pattern Matching Technique. IEEE Trans. Geosci. Remote Sens. 2016, 54, 770–782. [Google Scholar] [CrossRef]
- Andersen, S.; Tonboe, R.; Kern, S.; Schyberg, H. Improved Retrieval of Sea Ice Total Concentration from Spaceborne Passive Microwave Observations Using Numerical Weather Prediction Model Fields: An Intercomparison of Nine Algorithms. Remote Sens. Environ. 2006, 104, 374–392. [Google Scholar] [CrossRef]
- Ivanova, N.; Pedersen, L.T.; Tonboe, R.T.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L.; et al. Inter-Comparison and Evaluation of Sea Ice Algorithms: Towards Further Identification of Challenges and Optimal Approach Using Passive Microwave Observations. Cryosphere 2015, 9, 1797–1817. [Google Scholar] [CrossRef]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI Sea-Ice Concentration Climate Data Records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef]
- Cavalieri, D.J. A Microwave Technique for Mapping Thin Sea Ice. J. Geophys. Res. Ocean. 1994, 99, 12561–12572. [Google Scholar] [CrossRef]
- Kwok, R.; Comiso, J.C.; Martin, S.; Drucker, R. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice. J. Geophys. Res. Ocean. 2007, 112, C03S21. [Google Scholar] [CrossRef]
- Shokr, M.; Kaleschke, L. Impact of Surface Conditions on Thin Sea Ice Concentration Estimate from Passive Microwave Observations. Remote Sens. Environ. 2012, 121, 36–50. [Google Scholar] [CrossRef]
- Barber, D.G.; Fung, A.K.; Grenfell, T.C.; Nghiem, S.V.; Onstott, R.G.; Lytle, V.I.; Perovich, D.K.; Gow, A.J. The Role of Snow on Microwave Emission and Scattering over First-Year Sea Ice. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1750–1763. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T.; Fukamachi, Y.; Saitoh, S. Thickness and Production of Sea Ice in the Okhotsk Sea Coastal Polynyas from AMSR-E. J. Geophys. Res. Ocean. 2009, 114, C10025. [Google Scholar] [CrossRef]
- Shokr, M.; Asmus, K.; Agnew, T.A. Microwave Emission Observations from Artificial Thin Sea Ice: The Ice-Tank Experiment. IEEE Trans. Geosci. Remote Sens. 2009, 47, 325–338. [Google Scholar] [CrossRef]
- Similä, M.; Mäkynen, M.; Karvonen, J.; Gegicu, A.; Gierisch, A. Modeled Sea Ice Thickness Enhanced by Remote Sensing Data. In Proceedings of the Proc. European Space Agency Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; ESA: Prague, Czech Republic, 2016. Volume ESA SP-740. p. 6. [Google Scholar]
- Mäkynen, M.; Cheng, B.; Similä, M. On the Accuracy of Thin-Ice Thickness Retrieval Using MODIS Thermal Imagery over Arctic First-Year Ice. Ann. Glaciol. 2013, 54, 87–96. [Google Scholar] [CrossRef]
- Mäkynen, M.; Karvonen, J. MODIS Sea Ice Thickness and Open Water–Sea Ice Charts over the Barents and Kara Seas for Development and Validation of Sea Ice Products from Microwave Sensor Data. Remote Sens. 2017, 9, 1324. [Google Scholar] [CrossRef]
- JCOMM Expert Team on Sea Ice. Sea-Ice Nomenclature: Snapshot of the WMO Sea Ice Nomenclature WMO No. 259, Volume 1—Terminology and Codes; WMO-JCOMM: Geneva, Switzerland, 2014. [Google Scholar]
- Comiso, J.C.; Cho, K. “Description of GCOM-W1 AMSR2 Sea Ice Concentration Algorithm,” in “Descriptions of GCOM-W1 AMSR2 Level 1R and Level 2 Algorithms”; Japan Aerospace Exploration Agency, Earth Observation Research Center: Tsukuba, Janpan, 2013.
- OSI SAF. Global Sea Ice Type (netCDF)—Multimission; EUMETSAT SAF on Ocean and Sea Ice: Darmstadt, Germany, 2017. [Google Scholar]
- Yang, H.; Zou, X.; Li, X.; You, R. Environmental Data Records from FengYun-3B Microwave Radiation Imager. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4986–4993. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2018, 10, 24381. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Tian-Kunze, X. SMOS Sea Ice Thickness Product Description Document (PDD), Issue 3.0; Alfred Wegener Institute: Bremerhaven, Germany, 2021. [Google Scholar]
- Tian-Kunze, X. SMOS Sea Ice Thickness ReadMe-First Technical Note (RM-TN), Issue 2.0; Alfred Wegener Institute: Bremerhaven, Germany, 2021. [Google Scholar]
- NSIDC A Guide to NSIDC’s Polar Stereographic Projection. Available online: https://nsidc.org/data/user-resources/help-center/guide-nsidcs-polar-stereographic-projection (accessed on 20 July 2023).
- Wentz, F.J.; Meissner, T. AMSR Ocean Algorithm, Algorithm Theoretical Basis Document (ATBD); Remote Sensing Systems: Santa Rosa, CA, USA, 2000. [Google Scholar]
- Tian, T.; Tonboe, R.; Lavelle, J. The EUMETSAT OSI SAF AMSR-2 Sea Ice Concentration Algorithm, Algorithm Theoretical Basis Document, Product OSI 408; EUMETSAT OSI SAF: Darmstadt, Germany, 2015; p. 20. [Google Scholar]
- Tonboe, R.T.; Eastwood, S.; Lavergne, T.; Sørensen, A.M.; Rathmann, N.; Dybkjær, G.; Pedersen, L.T.; Høyer, J.L.; Kern, S. The EUMETSAT Sea Ice Concentration Climate Data Record. Cryosphere 2016, 10, 2275–2290. [Google Scholar] [CrossRef]
- Mathew, N.; Heygster, G.; Melsheimer, C. Surface Emissivity of the Arctic Sea Ice at AMSR-E Frequencies. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4115–4124. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Crawford, J.P.; Drinkwater, M.R.; Eppler, D.T.; Farmer, L.D.; Jentz, R.R.; Wackerman, C.C. Aircraft Active and Passive Microwave Validation of Sea Ice Concentration from the Defense Meteorological Satellite Program Special Sensor Microwave Imager. J. Geophys. Res. 1991, 96, 21989–22008. [Google Scholar] [CrossRef]
- Shi, L.; Liu, S.; Shi, Y.; Ao, X.; Zou, B.; Wang, Q. Sea Ice Concentration Products over Polar Regions with Chinese FY3C/MWRI Data. Remote Sens. 2021, 13, 2174. [Google Scholar] [CrossRef]
- Afanasyeva, E.; Alekseeva, T.A.; Sokolova, J.V.; Demchev, D.M.; Chufarova, M.S.; Bychenkov, Y.U.; Devyataev, D.V. AARI Methodology for Sea Ice Charts Composition. Russ. Arct. 2019, 7, 5–20. [Google Scholar] [CrossRef]
- Melsheimer, C.; Spreen, G.; Ye, Y.; Shokr, M. First Results of Antarctic Sea Ice Type Retrieval from Active and Passive Microwave Remote Sensing Data. Cryosphere 2023, 17, 105–126. [Google Scholar] [CrossRef]
Parameter | Radiometer Channel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
6.9V | 6.9H | 10.65V | 10.65H | 18.7V | 18.7H | 36.5V | 36.5H | 89V | 89H | |
emissivity | 0.96 | 0.88 | 0.9 | 0.9 | 0.95 | 0.90 | 0.93 | 0.88 | 0.90 | 0.83 |
0.45 | 0.40 | 0.4 | 0.4 | 0.75 | 0.47 | 0.95 | 0.70 | 0.97 | 0.97 |
MWRI | |||
---|---|---|---|
AMSR2 | Thick, 70–90% | Thick, >90% | Thin Ice |
thick, 70–90% | 21% | 57% | 22% |
thick, >90% | 1% | 98% | 1% |
thin ice | 7% | 40% | 53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäkynen, M.; Similä, M. Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data. Remote Sens. 2024, 16, 1600. https://doi.org/10.3390/rs16091600
Mäkynen M, Similä M. Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data. Remote Sensing. 2024; 16(9):1600. https://doi.org/10.3390/rs16091600
Chicago/Turabian StyleMäkynen, Marko, and Markku Similä. 2024. "Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data" Remote Sensing 16, no. 9: 1600. https://doi.org/10.3390/rs16091600
APA StyleMäkynen, M., & Similä, M. (2024). Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data. Remote Sensing, 16(9), 1600. https://doi.org/10.3390/rs16091600