Analysis of Multipath Changes in the Polish Permanent GNSS Stations Network
Abstract
:1. Introduction
- Antenna placement;
- Antenna type;
- Receiver type;
- Measurement post-processing.
2. Materials and Methods
2.1. Code-Minus-Carrier Combination
- p—pseudorange measurement;
- —carrier-phase measurement;
- I—ionospheric delay;
- —pseudorange multipath error (from several centimeters to few meters value);
- —carrier-phase multipath error (max 6.4 cm for L5 carrier);
- e—pseudorange noise (few centimeter value);
- —carrier-phase noise (sub-millimeter value);
- —carrier-phase range integer ambiguity.
2.2. Pseudorange Multipath (MP) Observable Combination
- —estimates of pseudorange multipath error [m];
- —pseudorange code measurement [m];
- —carrier wavelengths [m];
- —carrier—phase observable [cycles];
- and carrier frequency [Hz];
- .
3. Results
3.1. Code-Minus-Carrier L1 Analyses
3.2. Pseudorange Multipath Observable Analyses
3.3. Analysis of Data from Stations Characterized by Large RMS Averages for All Tested Combinations
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Groves, P.D. The PNT boom: Future trends in integrated navigation. Inside GNSs 2013, 8, 44–49. [Google Scholar]
- Qin, H.; Xue, X.; Yang, Q. GNSS multipath estimation and mitigation based on particle filter. IET Radar Sonar Navig. 2019, 13, 1588–1596. [Google Scholar] [CrossRef]
- Strode, P.R.; Groves, P.D. GNSS multipath detection using three-frequency signal-to-noise measurements. GPS Solut. 2016, 20, 399–412. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Robustelli, U.; Pugliano, G. Code multipath analysis of Galileo FOC satellites by time-frequency representation. Appl. Geomat. 2019, 11, 69–80. [Google Scholar] [CrossRef]
- Teunissen, P.J.; Montenbruck, O. Springer Handbook of Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10. [Google Scholar]
- Krzan, G.; Dawidowicz, K.; Paziewski, J. Low-cost GNSS antennas in precise positioning: A focus on multipath and antenna phase center models. GPS Solut. 2024, 28, 103. [Google Scholar] [CrossRef]
- Paziewski, J. Multi-constellation single-frequency ionospheric-free precise point positioning with low-cost receivers. GPS Solut. 2022, 26, 23. [Google Scholar] [CrossRef]
- Pelc-Mieczkowska, R.; Tomaszewski, D.; Bednarczyk, M. GNSS obstacle mapping as a data preprocessing tool for positioning in a multipath environment. Meas. Sci. Technol. 2019, 31, 015017. [Google Scholar] [CrossRef]
- Smyrnaios, M.; Schn, S.; Liso, M.; Jin, S. Multipath propagation, characterization and modeling in GNSS. In Geodetic Sciences-Observations, Modeling and Applications; IntechOpen: Rijeka, Croatia, 2013; pp. 99–125. [Google Scholar]
- Spilker, J.J., Jr.; Axelrad, P.; Parkinson, B.W.; Enge, P. Global Positioning System: Theory and Applications, Volume I; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996. [Google Scholar]
- Kavak, A.; Xu, G.; Vogel, W.J. GPS multipath fade measurements to determine L-band ground reflectivity properties. In Proceedings of the 20th NASA Propagation Experimenters Meeting, Fairbanks, AK, USA, 4–6 June 1996. [Google Scholar]
- Rotondo, G.; Thevenon, P.; Milner, C.; Macabiau, C.; Felux, M.; Hornbostel, A.; Circiu, M.S. Methodology for determining Pseudorange noise and multipath models for a multi-constellation, multi-frequency GBAS system. In Proceedings of the 2015 International Technical Meeting of the Institute of Navigation, Dana Point, CA, USA, 26–28 January 2015; pp. 383–392. [Google Scholar]
- Tranquilla, J.M.; Carr, J.; Al-Rizzo, H.M. Analysis of a choke ring groundplane for multipath control in global positioning system (GPS) applications. IEEE Trans. Antennas Propag. 1994, 42, 905–911. [Google Scholar] [CrossRef]
- Kunysz, W. A three dimensional choke ring ground plane antenna. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 1883–1888. [Google Scholar]
- Danskin, S.; Bettinger, P.; Jordan, T. Multipath mitigation under forest canopies: A choke ring antenna solution. For. Sci. 2009, 55, 109–116. [Google Scholar] [CrossRef]
- Kunysz, W. High performance GPS pinwheel antenna. In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 2506–2511. [Google Scholar]
- Kunysz, W. A Novel GPS Survey Antenna. In Proceedings of the 2000 National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 26–28 January 2000; pp. 698–705. [Google Scholar]
- Garin, L.; van Diggelen, F.; Rousseau, J.M. Strobe & edge correlator multipath mitigation for code. In Proceedings of the 9th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1996), Kansas City, MO, USA, 17–20 September 1996; pp. 657–664. [Google Scholar]
- Garin, L.; Rousseau, J.M. Enhanced strobe correlator multipath rejection for code & carrier. In Proceedings of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997), Kansas City, MO, USA, 16–19 September 1997; pp. 559–568. [Google Scholar]
- Hatch, R.R.; Keegan, R.G.; Stansell, T.A. Leica’s code and phase multipath mitigation techniques. In Proceedings of the 1997 National Technical Meeting of the Institute of Navigation, Kansas City, MO, USA, 16–19 September 1997; pp. 217–225. [Google Scholar]
- Weill, L.R. Application of superresolution concepts to the GPS multipath mitigation problem. In Proceedings of the 1998 National Technical Meeting of the Institute of Navigation, Long Beach, CA, USA, 21–23 January 1998; pp. 673–682. [Google Scholar]
- Irsigler, M.; Eissfeller, B. Comparison of multipath mitigation techniques with consideration of future signal structures. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 2584–2592. [Google Scholar]
- Paonni, M.; AVILA-RODRIGUEZ, J.A.; Pany, T.; Hein, G.W.; Eissfeller, B. Looking for an Optimum S-Curve Shaping of the Different MBOC Implementations. Navigation 2008, 55, 255–266. [Google Scholar] [CrossRef]
- Ray, J.; Cannon, M.; Fenton, P. GPS code and carrier multipath mitigation using a multiantenna system. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 183–195. [Google Scholar] [CrossRef]
- Irsigler, M. Characterization of multipath phase rates in different multipath environments. GPS Solut. 2010, 14, 305–317. [Google Scholar] [CrossRef]
- Robustelli, U.; Pugliano, G. GNSS Code Multipath Short-time Fourier Transform Analysis. Navig. J. Inst. Navig. 2018, 65, 353–362. [Google Scholar] [CrossRef]
- Wanninger, L.; May, M. Carrier-Phase Multipath Calibration of GPS Reference Stations. Navigation 2001, 48, 112–124. [Google Scholar] [CrossRef]
- Choi, K.; Bilich, A.; Larson, K.M.; Axelrad, P. Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zaminpardaz, S.; Teunissen, P.J.; Nadarajah, N. IRNSS stand-alone positioning: First results in Australia. J. Spat. Sci. 2016, 61, 5–27. [Google Scholar] [CrossRef]
- Braasch, M.S. Isolation of GPS multipath and receiver tracking errors. Navigation 1994, 41, 415–435. [Google Scholar] [CrossRef]
- Defraigne, P.; Bruyninx, C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut. 2007, 11, 239–249. [Google Scholar] [CrossRef]
- Hilla, S.; Cline, M. Evaluating pseudorange multipath effects at stations in the National CORS Network. GPS Solut. 2004, 7, 253–267. [Google Scholar] [CrossRef]
- Abou Galala, M.; Kaloop, M.R.; Rabah, M.M.; Zeidan, Z.M. Improving precise point positioning convergence time through TEQC multipath linear combination. J. Surv. Eng. 2018, 144, 04018002. [Google Scholar] [CrossRef]
- El-Rabbany, A. Introduction to GPS: The Global Positioning System; Artech House: London, UK, 2002. [Google Scholar]
- Mannucci, A.; Iijima, B.; Wilson, B. Wide area ionospheric delay corrections under ionospheric storm conditions. In Proceedings of the 1997 National Technical Meeting of the Institute of Navigation, Santa Monica, CA, USA, 14–16 January 1997; Volume 1, pp. 871–882. [Google Scholar]
- Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere model for European region based on multi-GNSS data and TPS interpolation. Remote Sens. 2017, 9, 1221. [Google Scholar] [CrossRef]
- Jiang, Y.; Milner, C.; Macabiau, C. Code carrier divergence monitoring for dual-frequency GBAS. GPS Solut. 2017, 21, 769–781. [Google Scholar] [CrossRef]
- Pirsiavash, A.; Broumandan, A.; Lachapelle, G.; O’Keefe, K. GNSS code multipath mitigation by cascading measurement monitoring techniques. Sensors 2018, 18, 1967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, F.; Zhang, X.; Pan, L. First result of GNSS-R-based sea level retrieval with CMC and its combination with the SNR method. GPS Solut. 2022, 26, 20. [Google Scholar] [CrossRef]
- Estey, L.H.; Meertens, C.M. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Vázquez, G.E.; Bennett, R.; Spinler, J. Assessment of pseudorange multipath at continuous GPS stations in Mexico. Positioning 2013, 2013, 36358. [Google Scholar] [CrossRef]
- Guo, J.; Li, G.; Kong, Q.; Wang, S.; Zong, G. On site pseudorange multipath effect on GPS surveying. In Principle and Application Progress in Location-Based Services; Springer: Berlin/Heidelberg, Germany, 2014; pp. 107–120. [Google Scholar]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Seepersad, G.; Bisnath, S. Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solut. 2015, 19, 369–379. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Szafranek, K. LC phase bias investigation of ASG-EUPOS stations. Geod. Cartogr. 2013, 62, 101–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapiński, J.; Tomaszewski, D.; Pelc-Mieczkowska, R. Analysis of Multipath Changes in the Polish Permanent GNSS Stations Network. Remote Sens. 2024, 16, 1617. https://doi.org/10.3390/rs16091617
Rapiński J, Tomaszewski D, Pelc-Mieczkowska R. Analysis of Multipath Changes in the Polish Permanent GNSS Stations Network. Remote Sensing. 2024; 16(9):1617. https://doi.org/10.3390/rs16091617
Chicago/Turabian StyleRapiński, Jacek, Dariusz Tomaszewski, and Renata Pelc-Mieczkowska. 2024. "Analysis of Multipath Changes in the Polish Permanent GNSS Stations Network" Remote Sensing 16, no. 9: 1617. https://doi.org/10.3390/rs16091617
APA StyleRapiński, J., Tomaszewski, D., & Pelc-Mieczkowska, R. (2024). Analysis of Multipath Changes in the Polish Permanent GNSS Stations Network. Remote Sensing, 16(9), 1617. https://doi.org/10.3390/rs16091617