The Application of Fast Fourier Transform Filtering to High Spatial Resolution Digital Terrain Models Derived from LiDAR Sensors for the Objective Mapping of Surface Features and Digital Terrain Model Evaluations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Rationale for the Method
2.2. Study Area and Datasets
2.3. Methodological Structure of the Scenarios and Experiments
3. Results
3.1. DTM Analysis and Filtering Limits Extraction
3.2. Results of the Scenario_1
3.3. Results of the Scenario_2
3.4. Results of the Scenario_3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conwentz, H. On National and International Protection of Nature. Source J. Ecol. 1914, 2, 109–122. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Hervás, J. State of the Art of National Landslide Databases in Europe and Their Potential for Assessing Landslide Susceptibility, Hazard and Risk. Geomorphology 2012, 139–140, 545–558. [Google Scholar] [CrossRef]
- Theron, A.; Engelbrecht, J. The Role of Earth Observation, with a Focus on SAR Interferometry, for Sinkhole Hazard Assessment. Remote Sens. 2018, 10, 1506. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A Tool to Introduce Geoheritage into Regional Environmental Management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- van Asselen, S.; Seijmonsbergen, A.C. Expert-Driven Semi-Automated Geomorphological Mapping for a Mountainous Area Using a Laser DTM. Geomorphology 2006, 78, 309–320. [Google Scholar] [CrossRef]
- González-Díez, A.; Fernández-Maroto, G.; Doughty, M.W.; Díaz de Terán, J.R.; Bruschi, V.; Cardenal, J.; Pérez, J.L.; Mata, E.; Delgado, J. Development of a Methodological Approach for the Accurate Measurement of Slope Changes Due to Landslides, Using Digital Photogrammetry. Landslides 2014, 11, 615–628. [Google Scholar] [CrossRef]
- Julzarika, A. Harintaka Indonesian DEMNAS: DSM or DTM? In Proceedings of the 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 26–27 August 2019; pp. 31–36. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Chendeş, V.; Simota, C.; Dumitru, S. Analyzing the Landforms-Agricultural Land-Use Types Relationship Using a DTM-Based Indicator. Sci. Pap. Ser. A, Agron. 2009, LII, 135–140. [Google Scholar]
- Passalacqua, P.; Hillier, J.; Tarolli, P. Innovative Analysis and Use of High-resolution DTMs for Quantitative Interrogation of Earth-surface Processes. Earth Surf. Process. Landforms 2014, 39, 1400–1403. [Google Scholar] [CrossRef]
- Simpson, J.E.; Smith, T.E.L.; Wooster, M.J. Assessment of Errors Caused by Forest Vegetation Structure in Airborne LiDAR-Derived DTMs. Remote Sens. 2017, 9, 1101. [Google Scholar] [CrossRef]
- García-Alén, G.; González-Cao, J.; Fernández-Nóvoa, D.; Gómez-Gesteira, M.; Cea, L.; Puertas, J. Analysis of Two Sources of Variability of Basin Outflow Hydrographs Computed with the 2D Shallow Water Model Iber: Digital Terrain Model and Unstructured Mesh Size. J. Hydrol. 2022, 612, 128182. [Google Scholar] [CrossRef]
- Maderal, E.N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J.C. Automatic River Network Extraction from LiDAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 365–372. [Google Scholar] [CrossRef]
- González-Díez, A.; Barreda-Argüeso, J.A.; Rodríguez-Rodríguez, L.; Fernández-Lozano, J. The Use of Filters Based on the Fast Fourier Transform Applied to DEMs for the Objective Mapping of Karstic Features. Geomorphology 2021, 385, 107724. [Google Scholar] [CrossRef]
- Amini Amirkolaee, H.; Arefi, H.; Ahmadlou, M.; Raikwar, V. DTM Extraction from DSM Using a Multi-Scale DTM Fusion Strategy Based on Deep Learning. Remote Sens. Environ. 2022, 274, 113014. [Google Scholar] [CrossRef]
- Hesse, R. Geomorphological Traces of Conflict in High-Resolution Elevation Models. Appl. Geopraphy 2014, 46, 11–20. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Gallant, J.C.; Wilson, J.P. Primary Topographic Attributes. In Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 51–85. ISBN 0-471-32188-5. [Google Scholar]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 64, pp. 227–245. [Google Scholar]
- González-Díez, A.; Barreda-Argüeso, J.A.; Rodríguez-Rodríguez, L.; Doughty, M.W.; Riquelme, A.J. Improving Filtering Methods Based on the Fast Fourier Transform to Delineate Objective Relief Domains: An Application to Mare Ingenii Lunar Area. Geomorphology 2023, 436, 108753. [Google Scholar] [CrossRef]
- González-Díez, A.; Barreda-Argüeso, J.A.; Díaz-Martínez, I.; Doughty, M.W.; Riquelme, A.J. Use of GIS Tools, Enhanced by FFT Filtering Methods, to Detect Blurred Craters in Synthetic Digital Elevation Models, to Improve Their Location and Morphological Characterisation. Geomorphology 2024, 460, 109269. [Google Scholar] [CrossRef]
- Woodhouse, I.H. On ‘Ground’ Truth and Why We Should Abandon the Term. J. Appl. Remote Sens. 2021, 15, 041501. [Google Scholar] [CrossRef]
- Gil-Fournier, A.; Parikka, J. Ground Truth to Fake Geographies: Machine Vision and Learning in Visual Practices. AI Soc. 2021, 36, 1253–1262. [Google Scholar] [CrossRef]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Hermosilla, T. Analysis of the Factors Affecting Lidar Dtm Accuracy in a Steep Shrub Area. Int. J. Digit. Earth 2011, 4, 521–538. [Google Scholar] [CrossRef]
- Šiljeg, A.; Domazetović, F.; Marić, I.; Lončar, N.; Panđa, L. New Method for Automated Quantification of Vertical Spatio-Temporal Changes within Gully Cross-Sections Based on Very-High-Resolution Models. Remote. Sens. 2021, 13, 321. [Google Scholar] [CrossRef]
- Gadal, S. Surveys and Perspectives Integrating Environment and Society Methods for Visual Quality Assessment of a Digital Terrain Model Tomaz Podobnikar. 2009, 2. Available online: https://journals.openedition.org/sapiens/738 (accessed on 24 June 2024).
- Sithole, G.; Vosselman, G. Experimental Comparison of Filter Algorithms for Bare-Earth Extraction from Airborne Laser Scanning Point Clouds. ISPRS J. Photogramm. Remote Sens. 2004, 59, 85–101. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Brigham, E.O. The Fast Fourier Transform and Its Applications; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1988. [Google Scholar]
- Booth, A.M.; Roering, J.J.; Perron, J.T. Automated Landslide Mapping Using Spectral Analysis and High-Resolution Topographic Data: Puget Sound Lowlands, Washington, and Portland Hills, Oregon. Geomorphology 2009, 109, 132–147. [Google Scholar] [CrossRef]
- Frederiksen, P. Terrain Analysis and Accuracy Prediction by Means of the Fourier Transformation. Photogrammetria 1981, 36, 145–157. [Google Scholar] [CrossRef]
- Perron, J.T.; Kirchner, J.W.; Dietrich, W.E. Spectral Signatures of Characteristic Spatial Scales and Nonfractal Structure in Landscapes. J. Geophys. Res. Earth Surf. 2008, 113, 1–14. [Google Scholar] [CrossRef]
- Davis, J.D.; Chojnacki, J.D. Two-Dimensional Discrete Fourier Transform Analysis of Karst and Coral Reef Morphologies. Trans. GIS 2017, 21, 521–545. [Google Scholar] [CrossRef]
- Fisher, P.F.; Tate, N.J. Causes and Consequences of Error in Digital Elevation Models. Prog. Phys. Geogr. 2006, 30, 467–489. [Google Scholar] [CrossRef]
- IGN, BTN25 Base Topográfica Nacional de España 1:25,000; 2009. Available online: https://centrodedescargas.cnig.es/CentroDescargas/home (accessed on 24 June 2024).
- IGN BTN Report; Base Topográfica Nacional (BTN) Puntos De Interés de la Base Topográfica Nacional (BTN-POI) Especificaciones. Available online: https://www.ign.es/web/resources/docs/IGNCnig/BTN/ESPBTN25.pdf (accessed on 24 June 2024).
- Maldonado, A.; Vaquero, P.A.; de las Cuevas, A.; Javier, F.; García, F. Automated Production of National Topographic Map in IGN-Spain. In Proceedings of the Río de Janeiro, XXVII Conferencia Cartográfica Internacional, ICC2015 Servicios, XI Jornadas Ibéricas de Infraestructuras de Datos Espaciales (JIIDE 2020), Virtual Event, 26–30 October 2020. [Google Scholar] [CrossRef]
- Martín-Asín López, G.; Camón Soteres, L.; Moreno Vergara, G.; Arístegui Cortijo, A. Digital Transformation in Topographic Databases. In Proceedings of the ICA, Gottingen, Germany, 3 December 2021; Copernicus GmbH: Göttingen, Germany, 2021; Volume 4, p. 71. [Google Scholar] [CrossRef]
- Gelabert, P.J.; Rodrigues, M.; Vidal-Macua, J.J.; Ameztegui, A.; Vega-Garcia, C. Spatially Explicit Modeling of the Probability of Land Abandonment in the Spanish Pyrenees. Landsc. Urban Plan. 2022, 226, 104487. [Google Scholar] [CrossRef]
- Gobierno de Cantabria, Mapa Geológico de Cantabria a Escala 1/25,000; 2014. Available online: https://info.igme.es/cartografiadigital/geologica/cantabria25.aspx (accessed on 24 June 2024).
- Gobierno de Cantabria 25k-Hoja 035-I (Santander). Mapa Geológico de Cantabria a Escala 1/25,000; 2014. Available online: https://info.igme.es/cartografiadigital/geologica/cantabria25Hoja.aspx?language=es&id=35_1 (accessed on 24 June 2024).
- Universidad de Santander (Univeridad de Cantabria); Gobierno de la Provincia de Santander; Consejo Superior de Investigaciones Científicas (CSIF). Centro Centro de Investigacion y Desarrollo de Santander, Cartografía, Santander 1980.
- Wheaton, J.M.; Fryirs, K.A.; Brierley, G.; Bangen, S.G.; Bouwes, N.; O’Brien, G. Geomorphic Mapping and Taxonomy of Fluvial Landforms. Geomorphology 2015, 248, 273–295. [Google Scholar] [CrossRef]
- Vitek, J.D.; Giardino, J.R.; Fitzgerald, J.W. Mapping Geomorphology: A Journey from Paper Maps, through Computer Mapping to GIS and Virtual Reality. Geomorphology 1996, 16, 233–249. [Google Scholar] [CrossRef]
- Walsh, S.J.; Butler, D.R.; Malanson, G.P. An Overview of Scale, Pattern, Process Relationships in Geomorphology: A Remote Sensing and GIS Perspective. Geomorphology 1998, 21, 183–205. [Google Scholar] [CrossRef]
- Gorum, T.; Gonencgil, B.; Gokceoglu, C.; Nefeslioglu, H.A. Implementation of Reconstructed Geomorphologic Units in Landslide Susceptibility Mapping: The Melen Gorge (NW Turkey). Nat. Hazards 2008, 46, 323–351. [Google Scholar] [CrossRef]
- Lagrange, J.-P. Generalization: Where Are We? Where Should We Go. In Geographic Information Research. Bridging the Atlantic; Craglia, M., Couclelis, H., Eds.; CRC Press: London, UK, 1997; pp. 187–204. ISBN 9781003062691. [Google Scholar]
- Dikau, R. The Application of a Digital Relief Model to Landform Analysis in Geomorphology. In Three dimensional applications in GIS; Raper, J., Ed.; CRC Press: London, UK, 1989; pp. 51–78. ISBN 0-85066-776-3. [Google Scholar]
- Anders, N.; Seijmonsbergen, A.; Bouten, W. Multi-Scale and Object-Oriented Image Analysis of High-Res LiDAR Data for Geomorphological Mapping in Alpine Mountains. In Proceedings of the Geomophometry, Zurich, Switzerland, 31 August–2 September, 2009; University of Zurich: Zurich, Switzerland, 2009; pp. 61–65. [Google Scholar]
- Ardizzone, F.; Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P. Impact of Mapping Errors on the Reliability of Landslide Hazard Maps. Nat. Hazards Earth Syst. Sci. 2002, 2, 3–14. [Google Scholar] [CrossRef]
- Guzzetti, F.; Aleotti, B.; Malamud, D.; Turcotte, D.L. Comparison of Three Landslide Events in Central and Northern Italy. In Proceedings of the 4th Plinius Conference on Mediterranean Storms, Mallorca, Spain, 2–4 October 2002; Jansà, A., Romero, R., Eds.; Universitat des Illes Baleares: Mallorca, Spain, 2003; p. 4. [Google Scholar]
- Hebeler, F.; Purves, R.S. The Influence of Elevation Uncertainty on Derivation of Topographic Indices. Geomorphology 2009, 111, 4–16. [Google Scholar] [CrossRef]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic Change Detection Using Historic Maps and DEM Differencing: The Temporal Dimension of Geospatial Analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Keaton, J.R.; Haneberg, W.C. Landslide Hazard Inventories and Uncertainty Associated. In Global View of Engineering Geology and the Environment; Wu, F., Qi, S., Eds.; CRC Press: London, UK, 2013; pp. 105–110. ISBN 978-1-138-00078-0. [Google Scholar]
- Lampert, T.A.; Stumpf, A.; Gançarski, P. An Empirical Study Into Annotator Agreement, Ground Truth Estimation, and Algorithm Evaluation. IEEE Trans. Image Process. 2016, 25, 2557–2572. [Google Scholar] [CrossRef]
- Hoffer, R.M. The Importance of “Ground Truth” Data in Remote Sensing. In Proceedings of the UN Panel Meeting on the Estab. and Implementation of Res. Programs in Remote Sensing, San Jose dos Campos, Spain, 29 November–10 December 1971; pp. 1–12. [Google Scholar]
- Réjou-Méchain, M.; Barbier, N.; Couteron, P.; Ploton, P.; Vincent, G.; Herold, M.; Mermoz, S.; Saatchi, S.; Chave, J.; de Boissieu, F.; et al. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them; Springer: Dordrecht, The Netherlands, 2019; Volume 40, ISBN 0123456789. [Google Scholar]
- Alex, M.-A.; Víctor, G.-M.; Jesús, Á.-M. Comparison of Digital Terrain Models Obtained with LiDAR and Photogrammetry. In Proceedings of the Advances in Design Engineering: Proceedings of the XXIX International Congress INGEGRAF, Logroño, Spain, 20–21 June 2019; pp. 576–585. [Google Scholar]
- Pérez, A.; Quesada, F.; González, A.; Boluda, A.; Maldonado, A.; de Tomás, J.A.; de la Paz Navas, M.; Prieto, S. The Automated Map. Public Innovation for the Generation of the National Topographic Map of Spain. In Proceedings of the ICA, Gottingen, Germany, 3 December 2021; Copernicus GmbH: Göttingen, Germany, 2021; Volume 4, pp. 1–7. [Google Scholar]
- Tejero, R.; González-Casado, J.M.; Gómez-Ortiz, D.; Sánchez-Serrano, F. Insights into the “Tectonic Topography” of the Present-Day Landscape of the Central Iberian Peninsula (Spain). Geomorphology 2006, 76, 280–294. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Contador, F.L.; Marín, R.G. Testing the Quality of Open-Access DEMs and Their Derived Attributes in Spain: SRTM, GDEM and PNOA DEM. Geomorphometry 2011, 53–56. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Díez, A.; Díaz-Martínez, I.; Cruz-Hernández, P.; Barreda-Argüeso, A.; Doughty, M. The Application of Fast Fourier Transform Filtering to High Spatial Resolution Digital Terrain Models Derived from LiDAR Sensors for the Objective Mapping of Surface Features and Digital Terrain Model Evaluations. Remote Sens. 2025, 17, 150. https://doi.org/10.3390/rs17010150
González-Díez A, Díaz-Martínez I, Cruz-Hernández P, Barreda-Argüeso A, Doughty M. The Application of Fast Fourier Transform Filtering to High Spatial Resolution Digital Terrain Models Derived from LiDAR Sensors for the Objective Mapping of Surface Features and Digital Terrain Model Evaluations. Remote Sensing. 2025; 17(1):150. https://doi.org/10.3390/rs17010150
Chicago/Turabian StyleGonzález-Díez, Alberto, Ignacio Díaz-Martínez, Pablo Cruz-Hernández, Antonio Barreda-Argüeso, and Matthew Doughty. 2025. "The Application of Fast Fourier Transform Filtering to High Spatial Resolution Digital Terrain Models Derived from LiDAR Sensors for the Objective Mapping of Surface Features and Digital Terrain Model Evaluations" Remote Sensing 17, no. 1: 150. https://doi.org/10.3390/rs17010150
APA StyleGonzález-Díez, A., Díaz-Martínez, I., Cruz-Hernández, P., Barreda-Argüeso, A., & Doughty, M. (2025). The Application of Fast Fourier Transform Filtering to High Spatial Resolution Digital Terrain Models Derived from LiDAR Sensors for the Objective Mapping of Surface Features and Digital Terrain Model Evaluations. Remote Sensing, 17(1), 150. https://doi.org/10.3390/rs17010150