Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biomass Samples of Grasslands
2.3. Spatial Data of Predictors for AGB Model
2.4. Modeling Above and Belowground Biomass of Grasslands
2.5. Estimating C Stocks of Grasslands Across the Inner Mongolia Autonomous Region
3. Results
3.1. Aboveground Biomass of Grasslands Across the Inner Mongolia Autonomous Region
3.2. Belowground Biomass of Grasslands Across the Inner Mongolia Autonomous Region
3.3. C Stocks of Living Biomass in Grasslands over the Inner Mongolia Autonomous Region
3.4. Importance of the Explanatory Variables for Predicting Grassland Living Biomass
4. Discussion
4.1. Estimating C Stocks of Grasslands with High Spatial Resolution Remote Sensing Data
4.2. Uncertainty in Data and Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Saatchi, S.; Santoro, M.; Thurner, M.; Weber, U. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.; Yin, Y. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Wang, L. Assessing the impact of climate on grassland biomass carbon stocks. Environ. Res. Lett. 2020, 15, 234–245. [Google Scholar]
- Kearney, S.P.; Porensky, L.M.; Augustine, D.J.; Gaffney, R.; Derner, J.D. Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, S.; Liu, H. Estimation of alpine grassland above-ground biomass and its response to climate on the Qinghai-Tibet Plateau during 2001 to 2019. Glob. Ecol. Conserv. 2022, 35, e02065. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Ma, W.; Guo, D.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 2010, 19, 268–277. [Google Scholar] [CrossRef]
- Chapungu, L.; Nhamo, L.; Gatti, R.C. Estimating biomass of savanna grasslands as a proxy of carbon stock using multispectral remote sensing. Remote Sens. Appl. Soc. Environ. 2020, 17, 100275. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Sullivan, M.J.; Platts, P.J.; Lewis, S.L.; Marchant, R.; Imani, G.; Hubau, W.; Abiem, I.; Adhikari, H.; Albrecht, T. High aboveground carbon stock of African tropical montane forests. Nature 2021, 596, 536–542. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Carvalhais, N.; Rozendaal, D.M.A.; Avitabile, V.; Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Rodríguez-Veiga, P.; et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 2021, 13, 3927–3950. [Google Scholar] [CrossRef]
- Ma, W.; Fang, J.; Yang, Y.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, J.; Li, M.; Xu, L.; Li, X.; Li, Y.; Cheng, C.; Zhao, W.; He, N. High-resolution spatial distribution of vegetation biomass and its environmental response on Qinghai-Tibet Plateau: Intensive grid-field survey. Ecol. Indic. 2023, 149, 110167. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Li, S.; Dou, H.; Dang, D.; Xuan, X.; Wang, H. Remote-sensing inversion method for aboveground biomass of typical steppe in Inner Mongolia, China. Ecol. Indic. 2021, 120, 106883. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Chen, A.; Guo, J.; Xing, X.; Yang, D.; Xu, B.; Lan, X.; Yang, X. A spatio-temporal fusion strategy for improving the estimation accuracy of the aboveground biomass in grassland based on GF-1 and MODIS. Ecol. Indic. 2023, 157, 111276. [Google Scholar] [CrossRef]
- Schmid, J.S.; Huth, A.; Taubert, F. Influences of traits and processes on productivity and functional composition in grasslands: A modeling study. Ecol. Model. 2021, 440, 109395. [Google Scholar] [CrossRef]
- Wu, L.; Liu, H.; Liang, B.; Zhu, X.; Cao, J.; Wang, Q.; Jiang, L.; Cressey, E.L.; Quine, T.A. A process-based model reveals the restoration gap of degraded grasslands in Inner Mongolian steppe. Sci. Total Environ. 2022, 806, 151324. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ciais, P.; Santoro, M.; Huang, Y.; Li, W.; Wang, Y.; Bastos, A.; Goll, D.; Arneth, A.; Anthoni, P. Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates. Glob. Chang. Biol. 2020, 26, 3997–4012. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Song, Z.; Chen, C.; Zhang, Y.; Chen, X.; Chen, W.; Yuan, W.; Wu, X.; Ran, X.; et al. Modelling Aboveground Biomass Carbon Stock of the Bohai Rim Coastal Wetlands by Integrating Remote Sensing, Terrain, and Climate Data. Remote Sens. 2021, 13, 4321. [Google Scholar] [CrossRef]
- Faqe Ibrahim, G.R.; Rasul, A.; Abdullah, H. Improving crop classification accuracy with integrated Sentinel-1 and Sentinel-2 data: A case study of barley and wheat. J. Geovisualization Spat. Anal. 2023, 7, 22. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Wang, B.; Kan, H.; Sun, Y.; Qin, Y.; Meng, B.; Li, M.; Chen, J.; Lv, Y.; et al. A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019) in China based on in situ measurements, UAV photos, and MODIS data. Earth Syst. Sci. Data 2023, 15, 821–846. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.; Liang, T.; Feng, Q.; Meng, X.; Liu, J.; Bao, X.; Gao, H. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Guo, J.; Dai, J.; Zhang, J.; Zhang, L.; Miao, Y. Estimation of aboveground biomass of senescence grassland in China’s arid region using multi-source data. Sci. Total Environ. 2024, 918, 170602. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, A.; Kang, X.; He, N.; Dong, G. Estimation of the Grassland Aboveground Biomass of the Inner Mongolia Plateau Using the Simulated Spectra of Sentinel-2 Images. Remote Sens. 2020, 12, 4155. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Huang, Y.; Sun, W.; Wei, Y.; Xiao, L.; Deng, X.; Zhu, J.; Li, T.; Zhang, W. Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes. Atmos. Chem. Phys. 2021, 21, 3059–3071. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Meinshausen, N.; Ridgeway, G. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Meinshausen, N.; Meinshausen, M.N. Package ‘quantregForest’, R Packag e Version 1.3–7; Quantile Regression Forests: Zurich, Switzerland, 2017.
- Kuhn, M. Caret: Classification and regression training. Astrophys. Source Code Libr. 2015. [Google Scholar]
- Xin, X.; Lan, X.; Li, L.; Tang, H.; Guo, H.; Li, H.; Jiang, C.; Liu, F.; Shao, C.; Qin, Y. Anthropogenic and climate impacts on carbon stocks of grassland ecosystems in Inner Mongolia and adjacent region. Sci. Total Environ. 2024, 946, 174054. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xu, B.; Yang, X.; Jin, Y.; Li, J.; Xia, L.; Chen, S.; Ma, H. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China. Remote Sens. 2014, 6, 5368–5386. [Google Scholar] [CrossRef]
- Jansen, V.S.; Kolden, C.A.; Schmalz, H.J. The Development of Near Real-Time Biomass and Cover Estimates for Adaptive Rangeland Management Using Landsat 7 and Landsat 8 Surface Reflectance Products. Remote Sens. 2018, 10, 1057. [Google Scholar] [CrossRef]
- Marino, S.; Brugiapaglia, E.; Miraglia, N.; Persichilli, C.; De Angelis, M.; Pilla, F.; Di Brita, A. Modelling of the above-ground biomass and ecological composition of semi-natural grasslands on the strenght of remote sensing data and machine learning algorithms. Ecol. Inform. 2024, 82, 102740. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, R.; Cheng, H.; Liang, T.; Zhang, K.; Chai, N.; Gao, J.; Feng, Q.; Hou, M.; Liu, J.; et al. Can Machine Learning Algorithms Successfully Predict Grassland Aboveground Biomass? Remote Sens. 2022, 14, 3843. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Z.; Wen, Q.; Ma, L.; Guo, J.; Chen, A.; Zhang, M.; Xing, X.; Yuan, Y.; Lan, X.; et al. Dynamic monitoring of aboveground biomass in inner Mongolia grasslands over the past 23 Years using GEE and analysis of its driving forces. J. Environ. Manag. 2024, 354, 120415. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Du, W.; Song, Z.; Zhang, D.; Wu, X.; Chen, B.; Wu, Y. Response of gross primary productivity to drought time-scales across China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005953. [Google Scholar] [CrossRef]
Predictor | Description | Group | Spatial Resolution | Time Period | Source |
---|---|---|---|---|---|
B5 | Reflectance of the Sentinel-2A Band5 | Reflectance of Sentinel-2 imagery | 20 m | 2016–2020 | https://sentiwiki.copernicus.eu/web/s2-applications, accessed on 20 February 2024 |
B6 | Reflectance of the Sentinel-2A Band6 | ||||
B7 | Reflectance of the Sentinel-2A Band7 | ||||
DEM | Digital elevation model (DEM) | Terrain | 30 m | 2003 | https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html, accessed on 21 February 2024 |
Slope | Slope derived from DEM | ||||
TPI | Topographic position index derived from DEM | ||||
TRI | Terrain ruggedness index derived from DEM | ||||
LULC | Land use and land cover | Land condition | 10 m | 2020 | https://esa-worldcover.org/en, accessed on 21 February 2024 |
NDVI | Normalized difference vegetation index | Vegetation index | 20 m | 2016–2020 | https://sentiwiki.copernicus.eu/web/s2-applications, accessed on 22 February 2024 |
EVI | Enhanced vegetation index | ||||
RVI | Ratio vegetation index | ||||
SAVI | Soil-adjusted vegetation index | ||||
OSAVI | Optimization of soil-adjusted vegetation index | ||||
AET | Actual evapotranspiration | Climate | 0.1° × 0.1° | 2016–2020 | https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE, accessed on 22 February 2024 |
PDSI | Palmer drought index | 0.01° × 0.01° | |||
SM | Soil moisture | 0.1° × 0.1° | |||
SR | Downward shortwave radiation | 0.1° × 0.1° | |||
Tmax | Maximum surface temperature | 0.1° × 0.1° | |||
VPD | Vapor pressure deficit | 0.01° × 0.01° | |||
Wind | Wind speed at 10 m high | 0.1° × 0.1° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, S.; Yang, X.; Wang, X.; Liu, K.; Dong, H. Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data. Remote Sens. 2025, 17, 29. https://doi.org/10.3390/rs17010029
Liu Y, Sun S, Yang X, Wang X, Liu K, Dong H. Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data. Remote Sensing. 2025; 17(1):29. https://doi.org/10.3390/rs17010029
Chicago/Turabian StyleLiu, Yong, Shaobo Sun, Xiaolei Yang, Xufeng Wang, Kai Liu, and Haibo Dong. 2025. "Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data" Remote Sensing 17, no. 1: 29. https://doi.org/10.3390/rs17010029
APA StyleLiu, Y., Sun, S., Yang, X., Wang, X., Liu, K., & Dong, H. (2025). Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data. Remote Sensing, 17(1), 29. https://doi.org/10.3390/rs17010029