Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis
Abstract
1. Introduction
2. Study Area
3. Data Acquisition and Processing Methods
3.1. Drone-Grounded Electrical-Source Airborne Transient ElectroMagnetic (D-GREATEM) Survey
3.2. Frequency-Domain Helicopter-Borne Electromagnetic (HEM) Survey
4. Results
4.1. Cross-Sectional View of the HEM and D-GREATEM Resistivity
4.2. Comparison Between the HEM and D-GREATEM Resistivity
4.3. The Comparative Analysis of D-GREATEM and HEM Resistivity with Outcrop Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEM | Airborne electromagnetic |
D-GREATEM | Drone-grounded electrical-source airborne transient electromagnetic |
EM | Electromagnetic |
ERT | Electrical resistivity tomography |
GREATEM | Grounded electrical-source airborne transient electromagnetic |
HEM | Frequency-domain helicopter-borne electromagnetic |
TEM | Transient electromagnetic |
References
- Xu, Q.; Fan, X.; Huang, R.; Westen, C. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bull. Eng. Geol. Environ. 2009, 68, 373–386. [Google Scholar] [CrossRef]
- Lacroix, P. Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes. Earth Planets Space 2016, 68, 46. [Google Scholar] [CrossRef]
- Doi, I.; Kamai, T.; Azuma, R.; Wang, G. A landslide induced by the 2016 Kumamoto Earthquake adjacent to tectonic displacement-Generation mechanism and long-term monitoring. Eng. Geol. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Chigira, M.; Tsou, C.; Matsushi, Y.; Hiraishi, N.; Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 2013, 201, 479–493. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Chang, K.; Chan, Y.; Chen, R.; Hsieh, Y. Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data. Nat. Hazards Earth Syst. Sci. 2018, 18, 709–727. [Google Scholar] [CrossRef]
- Fan, X.; Zhan, W.; Dong, X.; Westen, C.; Xu, Q.; Dai, L.; Yang, Q.; Huang, R.; Havenith, H. Analyzing successive landslide dam formation by different triggering mechanisms: The case of the Tangjiawan landslide, Sichuan. Chin. Eng. Geol. 2018, 243, 128–144. [Google Scholar] [CrossRef]
- Chigira, M.; Kiho, K. Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Eng. Geol. 1994, 38, 221–230. [Google Scholar] [CrossRef]
- Chigira, M.; Yagi, H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Eng. Geol. 2006, 82, 202–221. [Google Scholar] [CrossRef]
- Sato, H.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Godio, A.; Bottino, G. Electrical and electromagnetic investigation for landslide characterization. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 705–710. [Google Scholar]
- Lapenna, V.; Lorenzo, P.; Perrone, A.; Piscitelli, S.; Sdao, F.; Rizzo, E. High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull. Eng. Geol. Environ. 2003, 62, 259–268. [Google Scholar] [CrossRef]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Różycka, M.; Kotwicka, W.; Migoń, P. Geomorphology- and geophysics-based recognition of stages of deep-seated slope deformation (Sudetes, SW Poland). Eng. Geol. 2019, 260, 105230. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Rønning, J.S.; Ganerød, G.V.; Fabienne, E.D.; Reiser, F. Resistivity mapping as a tool for identification and characterisation of weakness zones in crystalline bedrock: Definition and testing of an interpretational model. Bull. Eng. Geol. Environ. 2014, 73, 1225–1244. [Google Scholar] [CrossRef]
- Hen-Jones, R.M.; Hughes, P.N.; Stirling, R.A.; Glendinning, S.; Chambers, J.E.; Gunn, D.A.; Cui, Y.J. Seasonal effects on geophysical–geotechnical relationships and their implications for electrical resistivity tomography monitoring of slopes. Acta Geotech. 2017, 12, 1159–1173. [Google Scholar] [CrossRef]
- Palacky, G. Resistivity characteristics of geologic targets. In Electromagnetic Methods in Applied Geophysics, Investigations in Geophysics No. 3; Nabighian, M., Ed.; Society of Exploration Geophysicists: Houston, TX, USA, 1988; pp. 53–129. [Google Scholar]
- Nakazato, H.; Konishi, N. Subsurface structure exploration of wide landslide area by Aerial electromagnetic exploration. Landslides 2005, 2, 165–169. [Google Scholar] [CrossRef]
- Baranwal, V.; Brönner, M.; Rønning, J.; Elvebakk, H.; Dalsegg, E. 3D interpretation of helicopter-borne frequency-domain electromagnetic (HEM) data from Ramså Basin and adjacent areas at Andøya, Norway. Earth Planets Space 2020, 72, 52. [Google Scholar] [CrossRef]
- Høyer, A.; Jørgensen, F.; Foged, N.; He, X.; Christiansen, A. Three-dimensional geological modelling of AEM resistivity data –A comparison of three methods. J. Appl. Geophys. 2015, 115, 65–78. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.; Westergaard, J.; Kirkegaard, C.; Foged, N.; Viezzoli, A. An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system. Explor. Geophys. 2009, 40, 184–192. [Google Scholar] [CrossRef]
- Steuer, A.; Siemon, B.; Auken, E. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany. J. Appl. Geophys. 2009, 67, 194–205. [Google Scholar] [CrossRef]
- Mogi, T.; Kusunoki, K.; Kaieda, H.; Ito, H.; Jomori, A.; Jomori, N.; Yuuki, Y. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan. Explor. Geophys. 2009, 40, 1–7. [Google Scholar] [CrossRef]
- Okazaki, K.; Mogi, T.; Utsugi, M.; Ito, Y.; Kunishima, H.; Yamazaki, T.; Takahashi, Y.; Hashimoto, T.; Ymamaya, Y.; Ito, H.; et al. Airborne electromagnetic and magnetic surveys for long tunnel construction design. Phys. Chem. Earth (A,B,C) 2011, 36, 1237–1246. [Google Scholar] [CrossRef]
- Ito, H.; Kaieda, H.; Mogi, T.; Jomori, A.; Yuuki, Y. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan. Explor. Geophys. 2014, 45, 43–48. [Google Scholar] [CrossRef]
- Allah, S.; Mogi, T.; Ito, H.; Jymori, A.; Yuuki, Y.; Fomenko, E.; Kiho, K.; Kaieda, H.; Suzuki, K.; Tsukuda, K. Three-dimensional resistivity modelling of grounded electrical-source airborne transient electromagnetic ((GREATEM) survey data from the Nojima Fault, Awaji Island, south-east Japan. Explor. Geophys. 2014, 45, 49–61. [Google Scholar] [CrossRef]
- Allah, S.; Mogi, T. Three-dimensional resistivity modeling of GREATEM survey data from Ontake Volcano, northwest Japan. Earth Planets Space 2016, 68, 76. [Google Scholar] [CrossRef]
- Jomori, A.; Jomori, N.; Jomori, A.; Kondo, T.; Yuuki, Y.; Shinsei, A. Development of airborne transient electromagnetics system using Drone: D-GREATEM, D-TEM [GLS], D-TEM [ALS]. BUTSURI-TANSA (Geopysical Explor.) 2020, 73, 83–95. (In Japanese) [Google Scholar] [CrossRef]
- Parshin, A.; Bashkeev, A.; Davidenko, Y.; Persova, M.; Iakovlev, S.; Bukhalov, S.; Grebenkin, N.; Tokareva, M. Lightweight Unmanned Aerial System for Time-Domain Electromagnetic Prospecting-The Next Stage in Applied UAV-Geophysics. Appl. Sci. 2021, 11, 2060. [Google Scholar] [CrossRef]
- Chigira, M. Geological prediction of rock avalanches. In Proceedings of the 8th International Congress of the International Association of Engineering Geology and Environment, Vancouver, BC, Canada, 21–25 September 1998; pp. 1409–1414. [Google Scholar]
- Nonomura, A.; Hasegawa, S. Regional extraction of flexural-toppled slopes in epicentral regions of subduction earthquakes along the Nankai Trough using DEMs. Environ. Earth Sci. 2013, 68, 139–149. [Google Scholar] [CrossRef]
- Nonomura, A.; Hasegawa, S.; Kageura, R.; Kawato, K.; Chiba, T.; Onoda, S.; Dahal, R. A method for regionally mapping gravitationally deformed and loosened slopes using helicopter-borne electromagnetic resistivity data. Nat. Hazards 2016, 81, 123–144. [Google Scholar] [CrossRef]
- Ward, S.; Hohmann, G. Electromagnetic theory for geophysical applications. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Ed.; SEG: Tulsa, OK, USA, 1988; pp. 131–311. [Google Scholar]
- Huang, H.; Fraser, D.C. The differential parameter method for multifrequency airborne resistivity mapping. Geophysics 1996, 61, 100–109. [Google Scholar] [CrossRef]
- Sinha, A.K.; Collett, L.S. Electromagnetic Fields of Oscillating Magnetic Dipoles Placed over a Multilayer Conducting Earth; Geological Survey of Canada Paper; Department of Energy, Mines and Resources: Ottawa, ON, Canada, 1973; Volume 73, pp. 1–48. [Google Scholar]
- Siemon, B. Electromagnetic methods–frequency domain. In Groundwater Geophysics; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 155–178. [Google Scholar]
- Ishibashi, Y.; Asada, S.; Igaki, H.; Yamada, S.; Tsuruta, S.; Shimura, M.; Kakita, K.; Ono, A.; Sakata, M. Results of proficiency testing for determination of Dioxins in marine sediment (3rd round) based on ISO/IEC Guide 43-1. BUNSEKI KAGAKU 2005, 54, 235–242. [Google Scholar] [CrossRef]
- Yunus, A.; Xinyu, C.; Catani, F.; Subramaniam, S.; Fan, X.; Jie, D.; Sajinjumar, K.; Gupta, A.; Avtar, R. Earthquake-induced soil landslides: Volume estimates and uncertainties with the existing scaling exponents. Sci. Rep. 2023, 13, 8151. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Uchiyama, S.; Hayakawa, Y.; Obanawa, H. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog. Earth Planet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef]
- Biévre, G.; Jongmans, D.; Lebourg, T.; Carriére, S. Electrical resistivity monitoring of an earthslide with electrodes located outside the unstable zone (Pont-Bourquin landlide, Swiss Alps). Near Surf. Geophys. 2021, 19, 225–239. [Google Scholar] [CrossRef]
- Singh, S.; Gautam, P.; Bagchi, D.; Singh, S.; Kumar, S.; Kannaujiya, S. 2D Electrical resistivity imaging for geothermal groundwater characterization and rejuvenation of the Gaurikund hot spring in the Main Central Thrust (MCT) zone of the Garhwal Himalaya, Uttrakhand, India. Groundw. Sustain. Dev. 2021, 15, 100686. [Google Scholar] [CrossRef]
HEM | D-GREATEM | |
---|---|---|
Observation speed | 30 km/h | 10 km/h |
Duration per flight | 1.5 h | 15 min |
M. along a 30km line | 1 h M. with 1 flight | 3 h M. with 12 flight |
Preparation of the M. | The sensor is transported by a large vehicle | The sensor is transported by a normal vehicle |
Heliport | Heliport is required near the observation area | No need |
Flight route management | Manual operation by a pilot | Planned route controlled by GPS tracks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonomura, A.; Hasegawa, S.; Jomori, A.; Okumura, M.; Ojyuku, H.; Hoshino, H.; Toyama, T.; Jomori, A.; Kaneda, Y. Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis. Remote Sens. 2025, 17, 2184. https://doi.org/10.3390/rs17132184
Nonomura A, Hasegawa S, Jomori A, Okumura M, Ojyuku H, Hoshino H, Toyama T, Jomori A, Kaneda Y. Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis. Remote Sensing. 2025; 17(13):2184. https://doi.org/10.3390/rs17132184
Chicago/Turabian StyleNonomura, Atsuko, Shuichi Hasegawa, Akira Jomori, Minoru Okumura, Haruki Ojyuku, Hiroaki Hoshino, Tetsuya Toyama, Atsuyoshi Jomori, and Yoshiyuki Kaneda. 2025. "Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis" Remote Sensing 17, no. 13: 2184. https://doi.org/10.3390/rs17132184
APA StyleNonomura, A., Hasegawa, S., Jomori, A., Okumura, M., Ojyuku, H., Hoshino, H., Toyama, T., Jomori, A., & Kaneda, Y. (2025). Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis. Remote Sensing, 17(13), 2184. https://doi.org/10.3390/rs17132184