Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 Imagery Acquisition and Preprocessing
2.3. Index Calculation and Threshold Calibration
2.4. Supervised and Unsupervised Learning-Based Severity Classification
2.4.1. Supervised Learning with SVM
- xᵢ, xⱼ ∈ ℝⁿ are the input feature vectors;
- γ > 0 is a scaling parameter that controls the influence of the dot product;
- r is a constant term that adjusts the bias of the polynomial;
- d ∈ ℕ is the degree of the polynomial.
- ‖xᵢ − xⱼ‖2 is the squared Euclidean distance between samples;
- γ > 0 is a shape parameter that controls the width of the Gaussian function.
2.4.2. Unsupervised Learning with ISODATA Clustering
- Randomly initialize k cluster centroids.
- Assign each pixel to the nearest centroid based on spectral similarity.
- Recalculate the mean vector for each cluster.
- Perform a merging of clusters if they are too close, or splitting if the variance within a cluster exceeds a threshold.
- Repeat the process until convergence is reached (i.e., minimal change in clusters between iterations).
2.5. Extent Delineation and Workflow Integration
3. Results
3.1. Burn Area Mapping with dNBR
3.2. Burn Area Mapping with dNDVI
3.3. Burn Area Mapping via Supervised SVM
3.4. Burn Area Mapping via Unsupervised ISODATA
3.5. Comparative Analysis of Burned Area Estimation Across Classification Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flannigan, M.D.; Stocks, B.J.; Turetsky, M.R.; Wotton, B.M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Zhou, B. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; Padilla, M. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Rogers, B.M.; Balch, J.K.; Goetz, S.J.; Lehmann, C.E.R.; Turetsky, M. Focus on changing fire regimes: Interactions with climate, ecosystems, and society. Environ. Res. Lett. 2020, 15, 030201. [Google Scholar] [CrossRef]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting burn severity across Mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef]
- Pelletier, F.; Eskelson, B.N.I.; Monleon, V.J.; Tseng, Y. Using Landsat imagery to assess burn severity of national forest inventory plots. Remote Sens. 2021, 13, 1935. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Hammer, L.D.; Godfrey, R. Performance of burn-severity metrics and classification in oak woodlands and grasslands. Remote Sens. 2015, 7, 10501–10522. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Sha, J.; Wang, J.; Li, X.; Cole, J.; Dergunov, D.; Wang, Y. Remote sensing of forest burnt area, burn severity, and post-fire recovery: A review. Remote Sens. 2022, 14, 4714. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Cardil, A.; Mola-Yudego, B.; Blázquez-Casado, Á.; González-Olabarria, J.R. Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. Remote Sens. 2019, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity: The Relativized Burn Ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef]
- He, K.; Shen, X.; Anagnostou, E.N. A global forest burn severity dataset from Landsat imagery (2003–2016). Earth Syst. Sci. Data 2024, 16, 3061–3081. [Google Scholar] [CrossRef]
- Ebadati, B.; Attarzadeh, R.; Alikhani, M.; Youssefi, F.; Pirasteh, S. Rapid Post-Wildfire Burned Vegetation Assessment with Google Earth Engine (Case Study: 2023 Canada Wildfires). ISPRS Arch. 2024, XLVIII-3/W3, 45–52. [Google Scholar] [CrossRef]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A new index for Sentinel-2 imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Seydi, S.T.; Sadegh, M. Improved burned area mapping using monotemporal Landsat-9 imagery and convolutional shift-transformer. Measurement 2023, 216, 112961. [Google Scholar] [CrossRef]
- Beltrán-Marcos, D.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Marcos, E.; Calvo, L. Relevance of UAV and Sentinel-2 Data Fusion for Estimating Topsoil Organic Carbon after Forest Fire. Geoderma 2023, 430, 116290. [Google Scholar] [CrossRef]
- Gillespie, M.; Okin, G.S.; Meyer, T.; Ochoa, F. Evaluating burn severity and post-fire woody vegetation regrowth in the Kalahari using UAV imagery and random forest algorithms. Remote Sens. 2024, 16, 3943. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Duarte, L.; Teodoro, A.C. Comparative study of random forest and support vector machine for land cover classification and post-wildfire change detection. Land 2024, 13, 1878. [Google Scholar] [CrossRef]
- Klimas, K.B.; Yocom, L.L.; Murphy, B.P.; David, S.R.; Belmont, P.; Lutz, J.A.; DeRose, R.J.; Wall, S.A. A machine learning model to predict wildfire burn severity for pre-fire risk assessments, Utah, USA. Fire Ecol. 2025, 21, 8. [Google Scholar] [CrossRef]
- Moghim, S.; Mehrabi, N. Comparing random forest and logistic regression models for wildfire susceptibility mapping in the Okanogan region, USA and James Bay, Canada. Fire Ecol. 2024, 20, 21. [Google Scholar] [CrossRef]
- Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.; Bae, J.; Park, S.; Seo, J.; Seo, D.; Lee, Y.; Kim, J. Single-Temporal Sentinel-2 for Analyzing Burned Area Detection Methods: A Study of 14 Cases in Republic of Korea Considering Land Cover. Remote Sens. 2024, 16, 884. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; ESA SP-740. Available online: https://elib.dlr.de/107381 (accessed on 17 May 2025).
- Howe, A.A.; Parks, S.A.; Harvey, B.J.; Saberi, S.J.; Lutz, J.A.; Yocom, L.L. Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sens. 2022, 14, 5249. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. Available online: https://www.usgs.gov/publications/landscape-assessment-ground-measure-severity-composite-burn-index-and-remote-sensing (accessed on 10 May 2025).
- Henry, M.C.; Maingi, J.K. Evaluating Landsat- and Sentinel-2-Derived Burn Indices to Map Burn Scars in Chyulu Hills, Kenya. Fire 2024, 7, 472. [Google Scholar] [CrossRef]
- Giddey, B.L.; Baard, J.A.; Kraaij, T. Verification of the Differenced Normalised Burn Ratio (dNBR) as an Index of Fire Severity in Afrotemperate Forest. S. Afr. J. Bot. 2022, 146, 348–353. [Google Scholar] [CrossRef]
- Gholinejad, S.; Khesali, E. An Automatic Procedure for Generating Burn Severity Maps from the Satellite Images-Derived Spectral Indices. Int. J. Digit. Earth 2021, 14, 1659–1673. [Google Scholar] [CrossRef]
- Ghazali, N.N.; Mohamed Saraf, N.; Abdul Rasam, A.R.; Othman, A.N.; Salleh, S.A.; Md Saad, N. Forest Fire Severity Level Using dNBR Spectral Index. Rev. Int. Géomatique 2025, 34, 89–101. [Google Scholar] [CrossRef]
- Franco, M.; Mundo, I.; Veblen, T. Field-Validated Burn-Severity Mapping in North Patagonian Forests. Remote Sens. 2020, 12, 214. [Google Scholar] [CrossRef]
- Dindaroglu, T.; Babur, E.; Yakupoğlu, T.; Rodrigo-Comino, J.; Cerdà, A. Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf. J. 2021, 122, 103318. [Google Scholar] [CrossRef]
- Avetisyan, D.; Stankova, N.; Dimitrov, Z. Assessment of Spectral Vegetation Indices Performance for Post-Fire Monitoring of Different Forest Environments. Fire 2023, 6, 290. [Google Scholar] [CrossRef]
- Avetisyan, D.; Stankova, N. Observation of spectral indices performance for post-fire forest monitoring. Aerospace Res. Bulg. 2024, 36, e06. [Google Scholar] [CrossRef]
- Furuya, D.E.G.; Aguiar, J.A.F.; Estrabis, N.V.; Pinheiro, M.M.F.; Furuya, M.T.G.; Pereira, D.R.; Ramos, A.P.M. A Machine Learning Approach for Mapping Forest Vegetation in Riparian Zones in an Atlantic Biome Environment Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 4086. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Di Fazio, S.; Modica, G. Integrated Use of Sentinel-1 and Sentinel-2 Data and Open-Source Machine Learning Algorithms for Land Cover Mapping in a Mediterranean Region. Eur. J. Remote Sens. 2022, 55, 52–70. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Xu, Y.; Zomer, S.; Brereton, R. Support vector machines: A recent method for classification in chemometrics. Crit. Rev. Anal. Chem. 2006, 36, 177–188. [Google Scholar] [CrossRef]
- Somvanshi, M.; Chavan, P. A review of machine learning techniques using decision tree and support vector machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Aslani, M.; Seipel, S. Efficient and decision boundary aware instance selection for support vector machines. Inf. Sci. 2021, 577, 579–598. [Google Scholar] [CrossRef]
- Maindonald, J. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2007; pp. 1–3. [Google Scholar] [CrossRef]
- Song, Y.; Liang, J.; Wang, F. An accelerator for support vector machines based on the local geometrical information and data partition. Int. J. Mach. Learn. Cybern. 2018, 10, 2389–2400. [Google Scholar] [CrossRef]
- Honeine, P.; Richard, C. Preimage problem in kernel-based machine learning. IEEE Signal Process. Mag. 2011, 28, 77–88. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Deng, T.; Li, W. Multi-label feature selection based on nonlinear mapping. Inf. Sci. 2024, 680, 121168. [Google Scholar] [CrossRef]
- Wang, R.; Ying, X.; Xing, B.; Tong, X.; Chen, T.; Yang, J.; Shi, Y. Improving point cloud classification and segmentation via parametric veronese mapping. Pattern Recognit. 2023, 144, 109784. [Google Scholar] [CrossRef]
- Trzcinski, T.; Christoudias, M.; Lepetit, V.; Fua, P. Learning image descriptors with the boosting-trick. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 278–286. Available online: https://proceedings.neurips.cc/paper_files/paper/2012/hash/0a09c8844ba8f0936c20bd791130d6b6-Abstract.html (accessed on 17 May 2025).
- Schölkopf, B.; Smola, A.; Müller, K.R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef]
- Schölkopf, B.; Mika, S.; Burges, C.; Knirsch, P.; Müller, K.; Rätsch, G.; Smola, A. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 1999, 10, 1000–1017. [Google Scholar] [CrossRef]
- Jampour, M.; Lepetit, V.; Mauthner, T.; Bischof, H. Pose-specific non-linear mappings in feature space towards multiview facial expression recognition. Image Vis. Comput. 2017, 58, 38–46. [Google Scholar] [CrossRef]
- Tiwari, P.; Dehdashti, S.; Obeid, A.; Marttinen, P.; Bruza, P. Kernel method based on non-linear coherent states in quantum feature space. J. Phys. A: Math. Theor. 2022, 55, 245301. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2010; Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 17 May 2025).
- Scikit-learn. Support Vector Machines. 2024. Available online: https://scikit-learn.org/stable/modules/svm.html (accessed on 17 May 2025).
- Scikit-learn. Hyperparameter Optimization with Grid Search. 2024. Available online: https://scikit-learn.org/stable/modules/grid_search.html (accessed on 17 May 2025).
- Bruzzone, L.; Fernández-Prieto, D. Classification of remote sensing images using radial-basis-function neural networks: A supervised training technique. Proc. SPIE 1998, 3500, 320–327. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Razaque, A.; Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef]
- Tan, R.; Ottewill, J.; Thornhill, N. Monitoring Statistics and Tuning of Kernel Principal Component Analysis with Radial Basis Function Kernels. IEEE Access 2020, 8, 198328–198342. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P. Sub-pixel mapping of remote sensing images based on radial basis function interpolation. ISPRS J. Photogramm. Remote Sens. 2014, 92, 1–15. [Google Scholar] [CrossRef]
- Izquierdo-Verdiguier, E.; Gómez-Chova, L.; Bruzzone, L.; Camps-Valls, G. Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5567–5578. [Google Scholar] [CrossRef]
- Ordiyasa, W.; Diqi, M.; Lustiyati, E.; Hiswati, M.; Salsabela, M. Smart Fire Safety: Analyzing Radial Basis Function Kernel in SVM for IoT-driven Smoke Detection. semanTIK 2024, 10, 159–166. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; Da Silva, J.; Agüera-Vega, F.; Martínez-Carricondo, P.; Serrano, J.; Moral, F. Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sens. 2019, 11, 993. [Google Scholar] [CrossRef]
- Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019, 6, 36. [Google Scholar] [CrossRef]
- Ibrahim, S.; Kose, M.; Adamu, B.; Jega, I. Remote Sensing for Assessing the Impact of Forest Fire Severity on Ecological and Socio-Economic Activities in Kozan District, Turkey. J. Environ. Stud. Sci. 2024, 15, 342–354. [Google Scholar] [CrossRef]
- Zahabnazouri, S.; Belmont, P.; David, S.; Wigand, P.E.; Elia, M.; Capolongo, D. Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy. Sensors 2025, 25, 3097. [Google Scholar] [CrossRef]
- Nie, F.; Hao, Z.; Wang, R. Multi-class Support Vector Machine with Maximizing Minimum Margin. arXiv 2023, arXiv:2312.06578. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, X.; Yang, Y.; Yang, Q.; Wang, C.; Liu, H.; Qi, Q. Full Convolutional Neural Network Based on Multi-Scale Feature Fusion for the Class Imbalance Remote Sensing Image Classification. Remote Sens. 2020, 12, 3547. [Google Scholar] [CrossRef]
- Quan, Z.; Pu, L. An Improved Accurate Classification Method for Online Education Resources Based on Support Vector Machine (SVM): Algorithm and Experiment. Educ. Inf. Technol. 2022, 28, 8097–8111. [Google Scholar] [CrossRef]
- Ganapathy, K.; Karthikeyan, P.; Harshitha, L. Detection of Arrhythmia Using Ensemble Classifier in Comparison with Support Vector Machine Classifier to Measure the Accuracy, Sensitivity, Specificity and Precision. In Proceedings of the 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 16–17 December 2022. [Google Scholar] [CrossRef]
- Lee, C.; Wang, W.; Huang, J. Clustering and Classification for Dry Bean Feature Imbalanced Data. Sci. Rep. 2024, 14, 31058. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, S.; Guo, S.; Zheng, C. Applying Support Vector Machines to a Diagnostic Classification Model for Polytomous Attributes in Small-Sample Contexts. Br. J. Math. Stat. Psychol. 2024, 78, 167–189. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Xie, H.; Zhong, J.; Zheng, S. Optimization of Support Vector Machines Based on Sparrow Search Algorithm. In Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2023), Beijing, China, 17–19 November 2023. [Google Scholar] [CrossRef]
- Widyawati, D.; Faradibah, A. Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine. Indones. J. Data Sci. 2023, 4, 76. [Google Scholar] [CrossRef]
- Tran, N.; Tanase, M.; Bennett, L.; Aponte, C. Fire-Severity Classification across Temperate Australian Forests: Random Forests versus Spectral Index Thresholding. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, Strasbourg, France, 9 October 2019; Volume 11149. [Google Scholar] [CrossRef]
- Lasko, K.; Maloney, M.; Becker, S.; Griffin, A.; Lyon, S.; Griffin, S. Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions. Remote Sens. 2021, 13, 4531. [Google Scholar] [CrossRef]
- Man, C.; Nguyen, T.; Bui, H.; Lasko, K.; Nguyen, T. Improvement of Land-Cover Classification over Frequently Cloud-Covered Areas Using Landsat 8 Time-Series Composites and an Ensemble of Supervised Classifiers. Int. J. Remote Sens. 2018, 39, 3610–3631. [Google Scholar] [CrossRef]
- Shi, F.; Gao, X.; Li, R.; Zhang, H. Ensemble Learning for the Land Cover Classification of Loess Hills in the Eastern Qinghai-Tibet Plateau Using GF-7 Multitemporal Imagery. Remote Sens. 2024, 16, 2556. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Du, H.; Li, M.; Xu, Y.; Zhou, C. An Ensemble Learning Approach for Land Use/Land Cover Classification of Arid Regions for Climate Simulation: A Case Study of Xinjiang, Northwest China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3939–3950. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W.; Warner, T.A.; He, C.; Wang, X.; Zhang, Y.; Guo, C.; Cheng, T.; Zhu, Y.; Cao, W.; et al. A Framework Combined Stacking Ensemble Algorithm to Classify Crop in Complex Agricultural Landscape of High Altitude Regions with Gaofen-6 Imagery and Elevation Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103386. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Navnath, N.; Chandrasekaran, K.; Stateczny, A.; Sundaram, V.; Panneer, P. Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France. Remote Sens. 2022, 14, 5232. [Google Scholar] [CrossRef]
- Zhang, G.; Ghamisi, P.; Zhu, X. Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9893–9906. [Google Scholar] [CrossRef]
dNBR Range | Severity Level | Description |
---|---|---|
≥0.66 | Very High Severity | Extensive vegetation loss and exposed soil |
0.44–0.66 | High Severity | Significant vegetation loss |
0.27–0.44 | Moderate Severity | Partial vegetation loss |
0.10–0.27 | Low Severity | Minor vegetation loss or early signs of damage |
<0.10 | Unburned or Regrowth | Little to no damage or recovering vegetation |
Type | Mathematical Definition | Strengths | Weaknesses |
---|---|---|---|
Linear SVM | Fast and simple | Limited to linear separability | |
Polynomial | Can model curved boundaries | Overfitting with high-degree polynomials | |
RBF Kernel | Can model complex patterns | Requires tuning; low interpretability |
Year | Latitude | Longitude | Event Date | Image Date(s) |
---|---|---|---|---|
2023 | 37.7519 | 128.8761 | 11 April | 12, 19, 27 April |
2023 | 35.065 | 126.5202 | 3–4 April | 22, 27 April; 2 May |
2023 | 36.1081 | 127.4881 | 2–4 April | 9, 12, 22 April |
2023 | 36.6 | 126.6675 | 2–4 April | 12, 22, 27 April |
2023 | 35.4936 | 128.7481 | 31 May–3 June | 3, 18 June |
2022 | 36.2425 | 128.5725 | 10–12 April | 19, 24 April; 4 May |
2022 | 35.5661 | 128.1653 | 28 Feb–1 March | 3, 15 March; 4 April |
2022 | 36.9897 | 129.4003 | 4–13 March | 15 March; 4, 9 April |
2022 | 38.1053 | 128.0022 | 10–12 April | 17 April, 17 May |
2020 | 36.5683 | 128.7294 | 24–26 April | 29 April, 12 May |
2019 | 38.3808 | 128.4675 | 4–5 April | 20 April |
2019 | 37.7519 | 128.8761 | 4–5 April | 20 April |
Kernel Type | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Linear | 95.0 | 89.2 | 96.9 | 92.9 |
Polynomial | 99.2 | 98.3 | 99.4 | 98.9 |
RBF | 99.3 | 98.5 | 99.5 | 99.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Lee, M.-H.; Kang, T.-H.; Cho, H.-R.; Yun, H.-S.; Lee, S.-J. Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery. Remote Sens. 2025, 17, 2196. https://doi.org/10.3390/rs17132196
Lee S-H, Lee M-H, Kang T-H, Cho H-R, Yun H-S, Lee S-J. Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery. Remote Sensing. 2025; 17(13):2196. https://doi.org/10.3390/rs17132196
Chicago/Turabian StyleLee, Sang-Hoon, Myeong-Hwan Lee, Tae-Hoon Kang, Hyung-Rai Cho, Hong-Sik Yun, and Seung-Jun Lee. 2025. "Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery" Remote Sensing 17, no. 13: 2196. https://doi.org/10.3390/rs17132196
APA StyleLee, S.-H., Lee, M.-H., Kang, T.-H., Cho, H.-R., Yun, H.-S., & Lee, S.-J. (2025). Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery. Remote Sensing, 17(13), 2196. https://doi.org/10.3390/rs17132196