Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. The Framework of This Study
2.2.1. Dataset Division and Decomposition
2.2.2. Fourier Period Analysis
2.2.3. Time Step Setting
2.3. Accuracy Evaluation
3. Results
3.1. Concentration Prediction
3.2. High Pollution Episodes Prediction
3.3. Cases in Different Seasons
4. Discussion
4.1. Auxiliary Variables
4.2. The Importance of Different IMFs
4.3. Selection of IMFs’ Classification Thresholds
4.4. O3-Associated Health Effects
5. Conclusions
- (1)
- The persistence model demonstrates superior accuracy and speed in predicting long-period IMFs and Res compared to the BiLSTM model, owing to its simplicity and direct reliance on historical data, which better captures these gradually changing trends.
- (2)
- In the 36-h ahead prediction, the prediction accuracy of IMF 4 (with a period of 24 h) largely determines the overall prediction accuracy.
- (3)
- Adding meteorological factors (t2m) and precursors (NO2) as auxiliary variables to the model has no significant impact on the prediction accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kinney, P.L.; Ware, J.H.; Spengler, J.D. A Critical Evaluation of Acute Ozone Epidemiology Results. Arch. Environ. Health 1988, 43, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.E.; Carraway, M.S.; Dhingra, R.; Tong, H.; Neas, L.; Diaz-Sanchez, D.; Cascio, W.; Case, M.; Crooks, J.; Hauser, E.R.; et al. Ozone Exposure Is Associated with Acute Changes in Inflammation, Fibrinolysis, and Endothelial Cell Function in Coronary Artery Disease Patients. Environ. Health 2017, 16, 126. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in Surface Ozone Pollution in China from 2013 to 2019: Anthropogenic and Meteorological Influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Pell, E.J.; Schlagnhaufer, C.D.; Arteca, R.N. Ozone-Induced Oxidative Stress: Mechanisms of Action and Reaction. Physiol. Plant. 1997, 100, 264–273. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, J.; Wan, W.; Hu, E.; Calatayud, V. Evidence of Widespread Ozone-Induced Visible Injury on Plants in Beijing, China. Environ. Pollut. 2014, 193, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yin, D.; Yu, Y.; Kang, S.; Qin, D.; Dong, L. PM2.5 and O3 Pollution during 2015–2019 over 367 Chinese Cities: Spatiotemporal Variations, Meteorological and Topographical Impacts. Environ. Pollut. 2020, 264, 114694. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shao, L.; Wang, W.; Li, H.; Wang, X.; Li, Y.; Li, W.; Jones, T.; Zhang, D. Air Quality Improvement in Response to Intensified Control Strategies in Beijing during 2013–2019. Sci. Total Environ. 2020, 744, 140776. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tang, H.; Zhao, H. Diurnal, Weekly and Monthly Spatial Variations of Air Pollutants and Air Quality of Beijing. Atmos. Environ. 2015, 119, 21–34. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Lu, K.; Zeng, L.; Hu, M.; Zhang, Y. The Trend of Surface Ozone in Beijing from 2013 to 2019: Indications of the Persisting Strong Atmospheric Oxidation Capacity. Atmos. Environ. 2020, 242, 117801. [Google Scholar] [CrossRef]
- Xia, N.; Du, E.; Guo, Z.; de Vries, W. The Diurnal Cycle of Summer Tropospheric Ozone Concentrations across Chinese Cities: Spatial Patterns and Main Drivers. Environ. Pollut. 2021, 286, 117547. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-Year Simulation of Ozone and Particulate Matter in China Using WRF/CMAQ Modeling System. Atmos. Chem. Phys. 2016, 16, 10333–10350. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, X.; Zhang, H. Modeling PM2.5 and O3 with Aerosol Feedbacks Using WRF/Chem over the Sichuan Basin, Southwestern China. Chemosphere 2020, 254, 126735. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, Y.; Ren, Y.; Cheng, S.; Han, L. Sensitivity of Summer Ozone to Precursor Emission Change over Beijing during 2010–2015: A WRF-Chem Modeling Study. Atmos. Environ. 2019, 218, 116984. [Google Scholar] [CrossRef]
- Sharma, A.; Ojha, N.; Pozzer, A.; Mar, K.A.; Beig, G.; Lelieveld, J.; Gunthe, S.S. WRF-Chem Simulated Surface Ozone over South Asia during the Pre-Monsoon: Effects of Emission Inventories and Chemical Mechanisms. Atmos. Chem. Phys. 2017, 17, 14393–14413. [Google Scholar] [CrossRef]
- Guo, Y.; Roychoudhury, C.; Mirrezaei, M.A.; Kumar, R.; Sorooshian, A.; Arellano, A.F. Investigating Ground-Level Ozone Pollution in Semi-Arid and Arid Regions of Arizona Using WRF-Chem v4.4 Modeling. Geosci. Model Dev. 2024, 17, 4331–4353. [Google Scholar] [CrossRef]
- Yafouz, A.; Ahmed, A.N.; Zaini, N.; El-Shafie, A. Ozone Concentration Forecasting Based on Artificial Intelligence Techniques: A Systematic Review. Water Air Soil Pollut. 2021, 232, 79. [Google Scholar] [CrossRef]
- Sun, W.; Palazoglu, A.; Singh, A.; Zhang, H.; Wang, Q.; Zhao, Z.; Cao, D. Prediction of Surface Ozone Episodes Using Clusters Based Generalized Linear Mixed Effects Models in Houston–Galveston–Brazoria Area, Texas. Atmos. Pollut. Res. 2015, 6, 245–253. [Google Scholar] [CrossRef]
- Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple Linear Regression and Artificial Neural Networks Based on Principal Components to Predict Ozone Concentrations. Environ. Model. Softw. 2007, 22, 97–103. [Google Scholar] [CrossRef]
- Ghazali, N.A.; Ramli, N.A.; Yahaya, A.S.; Yusof, N.F.F.M.; Sansuddin, N.; Al Madhoun, W.A. Transformation of Nitrogen Dioxide into Ozone and Prediction of Ozone Concentrations Using Multiple Linear Regression Techniques. Environ. Monit. Assess. 2010, 165, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Balogun, A.-L.; Tella, A. Modelling and Investigating the Impacts of Climatic Variables on Ozone Concentration in Malaysia Using Correlation Analysis with Random Forest, Decision Tree Regression, Linear Regression, and Support Vector Regression. Chemosphere 2022, 299, 134250. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.S.; Paredes, M.L.L.; de Oliveira, G.C.G.; Corrêa, S.M. Prediction of Ozone Concentration in Tropospheric Levels Using Artificial Neural Networks and Support Vector Machine at Rio de Janeiro, Brazil. Atmos. Environ. 2014, 98, 98–104. [Google Scholar] [CrossRef]
- Xing, J.; Wang, S.X.; Jang, C.; Zhu, Y.; Hao, J.M. Nonlinear Response of Ozone to Precursor Emission Changes in China: A Modeling Study Using Response Surface Methodology. Atmos. Chem. Phys. 2011, 11, 5027–5044. [Google Scholar] [CrossRef]
- Song, G.; Li, S.; Xing, J.; Yang, J.; Dong, L.; Lin, H.; Teng, M.; Hu, S.; Qin, Y.; Zeng, X. Surface UV-Assisted Retrieval of Spatially Continuous Surface Ozone with High Spatial Transferability. Remote Sens. Environ. 2022, 274, 112996. [Google Scholar] [CrossRef]
- Biancofiore, F.; Verdecchia, M.; Di Carlo, P.; Tomassetti, B.; Aruffo, E.; Busilacchio, M.; Bianco, S.; Di Tommaso, S.; Colangeli, C. Analysis of Surface Ozone Using a Recurrent Neural Network. Sci. Total Environ. 2015, 514, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; He, Z.; Wang, Z. Assessing the Effectiveness of Long Short-Term Memory and Artificial Neural Network in Predicting Daily Ozone Concentrations in Liaocheng City. Sci. Rep. 2025, 15, 6798. [Google Scholar] [CrossRef] [PubMed]
- Pak, U.; Kim, C.; Ryu, U.; Sok, K.; Pak, S. A Hybrid Model Based on Convolutional Neural Networks and Long Short-Term Memory for Ozone Concentration Prediction. Air Qual. Atmos. Health 2018, 11, 883–895. [Google Scholar] [CrossRef]
- Salman, A.K.; Choi, Y.; Singh, D.; Kayastha, S.G.; Dimri, R.; Park, J. Temporal CNN-Based 72-h Ozone Forecasting in South Korea: Explainability and Uncertainty Quantification. Atmos. Environ. 2025, 343, 120987. [Google Scholar] [CrossRef]
- Mu, X.; Wang, S.; Jiang, P.; Wu, Y. Estimation of Surface Ozone Concentration over Jiangsu Province Using a High-Performance Deep Learning Model. J. Environ. Sci. 2023, 132, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a Deep Convolutional Neural Network to Predict 2017 Ozone Concentrations, 24 Hours in Advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Eslami, E.; Choi, Y.; Lops, Y.; Sayeed, A. A Real-Time Hourly Ozone Prediction System Using Deep Convolutional Neural Network. Neural Comput. Appl. 2020, 32, 8783–8797. [Google Scholar] [CrossRef]
- Zavala-Romero, O.; Segura-Chavez, P.A.; Camacho-Gonzalez, P.; Zavala-Hidalgo, J.; Garcia, A.R.; Oropeza-Alfaro, P.; Romero-Centeno, R.; Gomez-Ramos, O. Operational Ozone Forecasting System in Mexico City: A Machine Learning Framework Integrating Forecasted Weather and Historical Ozone Data. Atmos. Environ. 2025, 344, 121017. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liang, L. Spatio-Temporal Evolution of Ozone Pollution and Its Influencing Factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environ. Pollut. 2020, 256, 113419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Chen, T.; Zhang, D.; Sun, F.; Wei, Q.; Dong, X.; Sun, R.; Huan, N.; Pan, L. Ground-Level Ozone in Urban Beijing over a 1-Year Period: Temporal Variations and Relationship to Atmospheric Oxidation. Atmos. Res. 2015, 164–165, 110–117. [Google Scholar] [CrossRef]
- Cheng, N.; Li, R.; Xu, C.; Chen, Z.; Chen, D.; Meng, F.; Cheng, B.; Ma, Z.; Zhuang, Y.; He, B.; et al. Ground Ozone Variations at an Urban and a Rural Station in Beijing from 2006 to 2017: Trend, Meteorological Influences and Formation Regimes. J. Clean. Prod. 2019, 235, 11–20. [Google Scholar] [CrossRef]
- Teng, M.; Li, S.; Yang, J.; Wang, S.; Fan, C.; Ding, Y.; Dong, J.; Lin, H.; Wang, S. Long-Term PM2.5 Concentration Prediction Based on Improved Empirical Mode Decomposition and Deep Neural Network Combined with Noise Reduction Auto-Encoder- A Case Study in Beijing. J. Clean. Prod. 2023, 428, 139449. [Google Scholar] [CrossRef]
- Teng, M.; Li, S.; Xing, J.; Song, G.; Yang, J.; Dong, J.; Zeng, X.; Qin, Y. 24-Hour Prediction of PM2.5 Concentrations by Combining Empirical Mode Decomposition and Bidirectional Long Short-Term Memory Neural Network. Sci. Total Environ. 2022, 821, 153276. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; He, L.-Y.; Huang, X.-F. Development of a High-Performance Machine Learning Model to Predict Ground Ozone Pollution in Typical Cities of China. J. Environ. Manag. 2021, 299, 113670. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, X.; Shi, N.; Lu, M. CEEMD-Subset-OASVR-GRNN for Ozone Forecasting: Xiamen and Harbin as Cases. Atmos. Pollut. Res. 2020, 11, 744–754. [Google Scholar] [CrossRef]
- Chu, Y.; Yao, J.; Qiao, D.; Zhang, Z.; Zhong, C.; Tang, L. Three-Hourly PM2.5 and O3 Concentrations Prediction Based on Time Series Decomposition and LSTM Model with Attention Mechanism. Atmos. Pollut. Res. 2023, 14, 101879. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Ragiri, P.R. A Deep Learning Approach to Enhance Air Quality Prediction: Comparative Analysis of LSTM, LSTM with Attention Mechanism and BiLSTM. In Proceedings of the 2024 IEEE Region 10 Symposium (TENSYMP), New Delhi, India, 27–29 September 2024; pp. 1–8. [Google Scholar]
- Jung, J.; Broadwater, R.P. Current Status and Future Advances for Wind Speed and Power Forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Wang, S.; Hao, J. Air Quality Management in China: Issues, Challenges, and Options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, Y.; Sadrinasab, M.; Chegini, V. Empirical Mode Decomposition and Fourier Analysis of Caspian Sea Level’s Time Series. Ocean. Eng. 2022, 252, 111114. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1994; ISBN 978-0-13-060774-4. [Google Scholar]
- Bögl, M.; Aigner, W.; Filzmoser, P.; Lammarsch, T.; Miksch, S.; Rind, A. Visual Analytics for Model Selection in Time Series Analysis. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; De Ridder, K. GARCH Modelling in Association with FFT–ARIMA to Forecast Ozone Episodes. Atmos. Environ. 2010, 44, 4252–4265. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of Meteorological Conditions and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Chinese Cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, L.; Wang, S.; Henze, D.K.; Fu, T.-M.; Zhang, L.; Wang, X. Unraveling the Complexities of Ozone and PM2.5 Pollution in the Pearl River Delta Region: Impacts of Precursors Emissions and Meteorological Factors, and Effective Mitigation Strategies. Atmos. Pollut. Res. 2025, 16, 102368. [Google Scholar] [CrossRef]
- Chen, Z.; Zhuang, Y.; Xie, X.; Chen, D.; Cheng, N.; Yang, L.; Li, R. Understanding Long-Term Variations of Meteorological Influences on Ground Ozone Concentrations in Beijing During 2006–2016. Environ. Pollut. 2019, 245, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Jiao, L.; Xu, G. Intensified Exposure to Compound Extreme Heat and Ozone Pollution in Summer across Chinese Cities. npj Clim. Atmos. Sci. 2025, 8, 78. [Google Scholar] [CrossRef]
- Lyu, Y.; Ju, Q.; Lv, F.; Feng, J.; Pang, X.; Li, X. Spatiotemporal Variations of Air Pollutants and Ozone Prediction Using Machine Learning Algorithms in the Beijing-Tianjin-Hebei Region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, G.; Xing, J.; Dong, J.; Zhang, M.; Fan, C.; Meng, S.; Yang, J.; Dong, L.; Gong, W. Unraveling Overestimated Exposure Risks through Hourly Ozone Retrievals from Next-Generation Geostationary Satellites. Nat. Commun. 2025, 16, 3364. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Cheng, H.; Lu, Q.; Liu, H.; Zhang, X.; Zhang, X. The Synergistic Effect of High Temperature and Ozone on the Number of Deaths from Circulatory System Diseases in Shijiazhuang, China. Front. Public Health 2023, 11, 1266643. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Geng, G.; Meng, X.; Xiao, Q.; Zheng, Y.; Gong, J.; Liu, J.; Wan, W.; Zhang, Q.; Kan, H.; et al. New WHO Global Air Quality Guidelines Help Prevent Premature Deaths in China. Natl. Sci. Rev. 2022, 9, nwac055. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, W.; Chen, C.; Ban, J.; Xu, D.; Zhu, P.; He, M.Z.; Li, T. Acute Effect of Multiple Ozone Metrics on Mortality by Season in 34 Chinese Counties in 2013–2015. J. Intern. Med. 2018, 283, 481–488. [Google Scholar] [CrossRef] [PubMed]
Hourly Prediction | ICEEMDAN- BiLSTM- Persistence | ICEEMDAN- BiLSTM | BiLSTM | |
---|---|---|---|---|
T+1 | R2 | 0.997 | 0.987 | 0.950 |
RMSE | 2.68 | 3.10 | 11.80 | |
HPFA | 98% | 91% | 66% | |
T+6 | R2 | 0.966 | 0.961 | 0.770 |
RMSE | 9.29 | 10.32 | 25.27 | |
HPFA | 76% | 70% | 26% | |
T+12 | R2 | 0.930 | 0.923 | 0.700 |
RMSE | 13.24 | 14.40 | 28.84 | |
HPFA | 66% | 61% | 15% | |
T+24 | R2 | 0.892 | 0.889 | 0.666 |
RMSE | 16.40 | 17.31 | 30.46 | |
HPFA | 61% | 53% | 7% | |
T+36 | R2 | 0.860 | 0.851 | 0.615 |
RMSE | 18.70 | 20.03 | 32.70 | |
HPFA | 45% | 40% | 1% | |
Daily Prediction | ||||
noon- MDA8 O3 | R2 | 0.939 | 0.928 | 0.594 |
RMSE | 13.27 | 14.37 | 34.22 | |
HPFA | 67% | 65% | 17% | |
midnight- MDA8 O3 | R2 | 0.989 | 0.986 | 0.877 |
RMSE | 5.70 | 6.32 | 18.70 | |
HPFA | 90% | 87% | 79% |
T+1 | T+12 | T+36 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Without auxiliary variables | 0.997 | 2.67 | 0.933 | 13.00 | 0.856 | 18.95 |
With auxiliary variables | 0.997 | 2.70 | 0.930 | 13.20 | 0.842 | 18.96 |
With decomposed auxiliary variables | 0.996 | 3.02 | 0.930 | 13.27 | 0.855 | 19.02 |
IMFs Predicted by Persistence Model | T+1 | T+12 | T+36 | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
IMF8 | 0.997 | 2.79 | 0.913 | 14.75 | 0.733 | 25.84 |
IMF11 | 0.997 | 2.73 | 0.930 | 13.16 | 0.855 | 19.05 |
IMF12 | 0.997 | 2.74 | 0.930 | 13.15 | 0.856 | 18.99 |
IMF13 | 0.997 | 2.68 | 0.933 | 13.24 | 0.856 | 18.95 |
IMF14 | 0.997 | 2.69 | 0.931 | 13.22 | 0.856 | 18.97 |
All IMFs predicted by BiLSTM | 0.987 | 3.10 | 0.923 | 14.40 | 0.851 | 20.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, T.; Yi, Y.; Zheng, Z.; Yang, J.; Li, S. Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing. Remote Sens. 2025, 17, 2530. https://doi.org/10.3390/rs17142530
Lv T, Yi Y, Zheng Z, Yang J, Li S. Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing. Remote Sensing. 2025; 17(14):2530. https://doi.org/10.3390/rs17142530
Chicago/Turabian StyleLv, Taotao, Yulu Yi, Zhuowen Zheng, Jie Yang, and Siwei Li. 2025. "Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing" Remote Sensing 17, no. 14: 2530. https://doi.org/10.3390/rs17142530
APA StyleLv, T., Yi, Y., Zheng, Z., Yang, J., & Li, S. (2025). Long-Term Hourly Ozone Forecasting via Time–Frequency Analysis of ICEEMDAN-Decomposed Components: A 36-Hour Forecast for a Site in Beijing. Remote Sensing, 17(14), 2530. https://doi.org/10.3390/rs17142530