The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024
Abstract
1. Introduction
2. Data and Model
3. Results
3.1. The Geomagnetic Condition
3.2. Data-Model Comparison
4. Discussion
4.1. δ∆O+ Due to E × B Drifts
4.2. δ∆O+ Due to Neutral Wind-Generated Vertical Plasma Velocity
4.3. δ∆O+ Due to Ambipolar Diffusion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Doornbos, E.; Nakashima, J. Thermospheric wind observed by GOCE: Wind jets and seasonal variations. J. Geophys. Res. Space Phys. 2016, 121, 6901–6913. [Google Scholar] [CrossRef]
- Kondo, T.; Richmond, A.D.; Liu, H.; Lei, J.; Watanabe, S. On the formation of a fast thermospheric zonal wind at the magnetic dip equator. Geophys. Res. Lett. 2011, 38, L10101. [Google Scholar] [CrossRef]
- Lühr, H.; Rother, M.; Häusler, K.; Fejer, B.; Alken, P. Direct comparison of nonmigrating tidal signatures in the electrojet, vertical plasma drift and equatorial ionization anomaly. J. Atmos. Sol.-Terr. Phys. 2012, 75, 31–43. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Yamazaki, Y. Effects of subauroral polarization streams on the equatorial electrojet during the geomagnetic storm on 1 June 2013: 2. The temporal variations. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030180. [Google Scholar] [CrossRef]
- England, S.L.; Immel, T.J.; Sagawa, E.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 2006, 111, A10S19. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Bertoni, F.; Reinisch, B.W.; Kherani, E.A.; Sobral, J.H.A. Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. J. Geophys. Res. 2012, 117, A05321. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Large-scale traveling ionospheric disturbances impacting equatorial ionization anomaly development in the local morning hours of the Halloween Superstorms on 29–30 October 2003. J. Geophys. Res. 2010, 115, A04302. [Google Scholar] [CrossRef]
- Joseph, O.O.; Yamazak, Y.; Cilliers, P.; Baki, P.; Ngwira, C.M.; Mito, C. A study on the response of the Equatorial Ionization Anomaly over the East Africa sector during the geomagnetic storm of November 13, 2012. Adv. Space Res. 2015, 55, 2863–2872. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2009. [Google Scholar]
- Lin, C.H.; Wang, W.; Hagan, M.E.; Hsiao, C.C.; Immel, T.J.; Hsu, M.L.; Liu, J.Y.; Paxton, L.J.; Fang, T.W.; Liu, C.H. Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures. Geophys. Res. Lett. 2007, 34, L11112. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, D.; Liu, J.; Hao, Y.; Xiao, Z.; Shi, J.; Wang, G. Lunar tidal effect on equatorial ionization anomaly region in China low latitude. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029845. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Coster, A.J.; Chau, J.L.; Valladares, C.E. Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. 2010, 115, A00G07. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.; Wang, W.; Erickson, P.J.; Qian, L.; Eastes, R.; Harding, B.J.; Immel, T.J.; Karan, D.K.; Daniell, R.E.; et al. Pronounced suppression and X-pattern merging of equatorial ionization anomalies after the 2022 Tonga volcano eruption. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030527. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.A.B.; Souza, J.R.; Abdu, M.A.; Paes, R.R.; Sousasantos, J.; Marques, M.S.; Bailey, G.J.; Denardini, C.M.; Batista, I.S.; Takahashi, H.; et al. Modeling the equatorial and low-latitude ionospheric response to an intense X-class solar flare. J. Geophys. Res. Space Phys. 2015, 120, 3021–3032. [Google Scholar] [CrossRef]
- Jonah, O.F.; Goncharenko, L.; Erickson, P.J.; Zhang, S.; Coster, A.; Chau, J.L.; de Paula, E.R.; Rideout, W. Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027909. [Google Scholar] [CrossRef]
- Lin, C.H.; Hsiao, C.C.; Liu, J.Y.; Liu, C.H. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure. J. Geophys. Res. Space Phys. 2007, 112, A12. [Google Scholar] [CrossRef]
- Lühr, H.; Rother, M.; Häusler, K.; Alken, P.; Maus, S. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 2008, 113, A08313. [Google Scholar] [CrossRef]
- Sumod, S.G.; Pant, T.K. An investigation of solar flare effects on equatorial ionosphere and thermosphere using co-ordinated measurements. Earth Planets Space 2019, 71, 125. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Solomon, S.C. Responses of the thermosphere and ionosphere system to concurrent solar flares and geomagnetic storms. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027431. [Google Scholar] [CrossRef]
- Huba, J.D.; Drob, D. SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. 2017, 44, 5928–5935. [Google Scholar] [CrossRef]
- Wu, K.; Qian, L.; Wang, W.; Cai, X.; Mclnerney, J.M. The formation mechanism of merged EIA during a storm on 4 November 2021. J. Geophys. Res. Space Phys. 2025, 130, e2024JA032896. [Google Scholar] [CrossRef]
- Oyedokun, O.J.; Akala, A.O.; Oyeyemi, E.O. Responses of the African equatorial ionization anomaly (EIA) to some selected intense geomagnetic storms during the maximum phase of solar cycle 24. Adv. Space Res. 2021, 67, 1222–1243. [Google Scholar] [CrossRef]
- Adekoya, B.; Chukwuma, V.; Adebiyi, S.; Adebesin, B.; Ikubanni, S.; Bolaji, O.; Oladunjoye, H.; Bisuga, O. Ionospheric storm effects in the EIA region in the American and Asian-Australian sectors during geomagnetic storms of October 2016 and September 2017. Adv. Space Res. 2023, 72, 1237–1265. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Braun, J.J.; Weiss, J.; Wu, Q.; VanHove, T.; Hunt, D.; Sleziak-Sallee, M. Unveiling ionospheric response to the May 2024 superstorm with low-Earth-orbit satellite observations. Space Weather 2025, 23, e2024SW004245. [Google Scholar] [CrossRef]
- Fagundes, P.; Pillat, V.; Habarulema, J.; Muella, M.; Venkatesh, K.; de Abreu, A.; Anoruo, C.; Vieira, F.; Welyargis, K.; Agyei-Yeboah, E.; et al. Equatorial Ionization Anomaly Disturbances (EIA) Triggered by the May 2024 Solar Coronal Mass Ejection (CME): The Strongest Geomagnetic Superstorm in the Last Two Decades. Adv. Space Res. 2025; in press. [Google Scholar] [CrossRef]
- Aa, E.; Chen, Y.; Luo, B. Dynamic expansion and merging of the equatorial ionization anomaly during the 10–11 May 2024 super geomagnetic storm. Remote Sens. 2024, 16, 4290. [Google Scholar] [CrossRef]
- Nayak, C.; Buchert, S.; Yiğit, E.; Ankita, M.; Singh, S.; Tulasi Ram, S.; Dimri, A.P. Topside Low-Latitude Ionospheric Response to the 10–11 May 2024 Super Geomagnetic Storm as Observed by Swarm: The Strongest Storm-Time Super-Fountain During the Swarm Era? J. Geophys. Res. Space Phys. 2025, 130, e2024JA033340. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47. [Google Scholar] [CrossRef]
- Peymirat, C.; Richmond, A.D.; Kobea, A.T. Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J. Geophys. Res. Space Phys. 2000, 105, 22991–23003. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Zhang, S.R.; Foster, J.C.; Holt, J.M.; Erickson, P.J.; Coster, A.J. Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. J. Geophys. Res. Space Phys. 2012, 117, A8. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Liu, J.; Song, H.; Xia, H. The quasi-periodic nighttime traveling ionospheric disturbances on 13 May 2024 during the recovery phase of a SuperStorm. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033257. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Q.; Lühr, H.; Zhong, Y.; Zhang, K.; Xia, H. Local time and hemispheric asymmetries of field-aligned currents and polar electrojet during May 2024 superstorm periods. J. Geophys. Res. Space Phys. 2024, 129, e2024JA033020. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Daniell, R.E.; Eastes, R.W.; Wang, W.; McClintock, W.E.; Michell, R.G.; England, S. GOLD observations of the merging of the Southern Crest of the equatorial ionization anomaly and aurora during the 10 and 11 May 2024 Mother’s Day super geomagnetic storm. Geophys. Res. Lett. 2024, 51, e2024GL110632. [Google Scholar] [CrossRef]
- Lee, W.; Liu, G.; Wu, D.L.; Rowland, D.E. Ionospheric response to the 10 May 2024 geomagnetic storm as observed in GNSS radio occultation electron density. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033489. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm–an Earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 2005, 110, A05306. [Google Scholar] [CrossRef]
- Richards, P.G.; Fennelly, J.A.; Torr, D.G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 1994, 99, 8981–8992. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2003, 108, 1062. [Google Scholar] [CrossRef]
- Xia, H.; Wang, H.; Zhang, K. Extreme responses of the ionospheric radial currents to the main phase of the super geomagnetic storm on 10 May 2024. J. Geophys. Res. Space Phys. 2024, 129, e2024JA033126. [Google Scholar] [CrossRef]
- Vichare, G.; Bagiya, M.S. Manifestations of strong IMF-by on the equatorial ionospheric electrodynamics during 10 May 2024 geomagnetic storm. Geophys. Res. Lett. 2024, 51, e2024GL112569. [Google Scholar] [CrossRef]
- Rishbeth, H. The effect of winds on the ionospheric F2-peak. J. Atmos. Terr. Phys. 1967, 29, 225–238. [Google Scholar] [CrossRef]
- Lee, W.; Song, I.-S.; Shim, J.S.; Liu, G.; Jee, G. The impact of lower atmosphere forecast uncertainties on WACCM-X prediction of ionosphere-thermosphere system during geomagnetic storms. Space Weather 2024, 22, e2024SW004137. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Richmond, A.D. A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects. J. Geophys. Res. Space Phys. 2013, 118, 5891–5905. [Google Scholar] [CrossRef]
- Liang, P.H. F2 ionization and geomagnetic latitudes. Nature 1947, 160, 642. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Liu, J.; Zheng, Z.; He, Y.; Gao, J.; Sun, L.; Zhong, Y. Dynamics of the tongue of ionizations during the geomagnetic storm on 7 September 2015: The altitudinal dependences. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031735. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Liu, J.; Song, H.; Liu, X. The significant enhanced quiet-time equatorial ionization anomaly by the intense solar flare on 06 September 2017. J. Geophys. Res. Space Phys. 2024, 129, e2024JA033264. [Google Scholar] [CrossRef]
- Astafyeva, E.; Maletckii, B.; Förster, M.; Ouar, I.D.; Hairston, M.R.; Coley, W.R. Extreme Ionospheric Uplift and a Remarkable Negative Storm Phase During the 10–11 May 2024 Geomagnetic Superstorm; ESS Open Archive: Copernicus Publications on behalf of the European Geosciences Union: Göttingen, Germany, 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, D.; Fu, Y.; Yang, C.; Zhang, K.; Cui, Y. The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024. Remote Sens. 2025, 17, 2616. https://doi.org/10.3390/rs17152616
Bai D, Fu Y, Yang C, Zhang K, Cui Y. The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024. Remote Sensing. 2025; 17(15):2616. https://doi.org/10.3390/rs17152616
Chicago/Turabian StyleBai, Di, Yijun Fu, Chunyong Yang, Kedeng Zhang, and Yongqiang Cui. 2025. "The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024" Remote Sensing 17, no. 15: 2616. https://doi.org/10.3390/rs17152616
APA StyleBai, D., Fu, Y., Yang, C., Zhang, K., & Cui, Y. (2025). The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024. Remote Sensing, 17(15), 2616. https://doi.org/10.3390/rs17152616