Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Habitat Factor Selection
2.2.2. Habitat Factor Data Source
2.2.3. Biological Data Source
2.3. Methods
2.3.1. Remote Sensing Inversion Method for Transparency
2.3.2. Processing Methods for Remote Sensing Data
2.3.3. Preference Analysis of Habitat Factors for Chinese Sturgeon
2.3.4. Habitat Suitability Prediction for Chinese Sturgeon via MaxEnt Model
3. Results
3.1. Marine Habitat Preference of Chinese Sturgeon
3.2. Importance Ranking of Marine Habitat Factors on Chinese Sturgeon
3.3. Marine Habitat Suitability Distribution of Chinese Sturgeon Across Seasons
4. Discussion
4.1. Interpretation of Results and Comparison with Previous Studies
Habitat Factors | This Study | Other Studies | |||||
---|---|---|---|---|---|---|---|
Preference Range | Environment Condition | Individual Situation | Preference Range | Environment Condition | Individual Situation | References | |
Temperature | 10–30 °C (SST) 10–25 °C (BT) | China sea | Over 3 years old | 17–26 °C | Laboratory test | Eight months old | Li Dapeng et al., 2008 [72] |
20 °C | Laboratory test | Seven months old | Feng Guangpeng et al., 2010 [73] | ||||
Depth | 0–20 m | China sea | Over 3 years old | 22.19 m | the Coastal Waters of China | Over 3 years old | Wang Chengyou et al., 2016 [7] |
Salinity | 10–35‰ | China sea | Over 3 years old | 0–25‰ | Hatchery | Eight months old | Zhao et al., 2011 [12] |
25‰ | Laboratory test | 1.5 years old | Qin Shaozong, 2020 [65] | ||||
Velocity | 0–0.20 m/s | Yangtze River | Over 3 years old | 0.81–1.98 m/s | Spawning ground | Mature sturgeon (Over 15 years old) | Wei Qiwei et al., 2020 [8] |
0.73–1.75 m/s | Spawning ground | Mature sturgeon (Over 15 years old) | Zhang hui et al., 2007 [74] | ||||
1.30–1.50 m/s | Spawning ground | Mature sturgeon (Over 15 years old) | Ban xuan et al., 2011 [26] | ||||
Transparency | 0.40–3.00 m | China sea | Over 3 years old | / | / | / | / |
NPP | 1000–3000 mg/m2 | China sea | Over 3 years old | / | / | / | / |
ZOOC | 0.20–6.00 g/m2 | China sea | Over 3 years old | / | / | / | / |
4.2. Correlation and Covariance Matrix Analysis Between Environmental Variables
4.3. Study Implications in Chinese Sturgeon Conservation
4.4. The Impacts of Global Climate Change and Human Activities on Marine Habitat
4.5. Future Research Directions
5. Conclusions
- (1)
- Chinese sturgeon exhibited distinct environmental preferences after release, primarily inhabiting shallow coastal waters (≤20 m depth) with defined ranges, sea surface temperature of 10–30 °C, bottom temperature of 10–25 °C, salinity of 10–35‰, transparency of 0.40–3.00 m, eastward current velocity of −0.20–0.15 m/s, northward current velocity of −0.20–0.20 m/s, net primary productivity of 1000–3000 mg/m2, and zooplankton carbon content of 0.20–6.00 g/m2.
- (2)
- The importance ranking of marine habitat factors on Chinese sturgeon exhibited seasonal shifts—salinity, net primary productivity, and depth dominated in spring; bottom temperature, net primary productivity, and depth in summer/autumn; salinity, depth, and transparency in winter.
- (3)
- Spatially, high-suitability areas peaked in autumn and concentrated in the Yangtze Estuary, northern Jiangsu coast, and Zhoushan Archipelago, with notable seasonal dynamics: summer expanded coastal suitability zones, autumn triggered eastward expansion of medium-/low-suitability areas into the East Sea, and winter saw northward extension of medium-suitability areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boscari, E.; Wu, J.; Jiang, T.; Zhang, S.; Cattelan, S.; Wang, C.; Du, H.; Li, C.; Li, J.; Ruan, R.; et al. The last giants of the Yangtze River: A multidisciplinary picture of what remains of the endemic Chinese sturgeon. Sci. Total Environ. 2022, 843, 157011. [Google Scholar] [CrossRef]
- Huang, Z.; Li, H. Dams trigger exponential population declines of migratory fish. Sci. Adv. 2024, 10, eadi6580. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, L. Yangtze Dams Increasingly Threaten the Survival of the Chinese Sturgeon. Curr. Biol. 2018, 28, 3640–3647.e3618. [Google Scholar] [CrossRef]
- Cao, L.; Shao, W.H.; Yi, W.J.; Zhang, E. A review of conservation status of freshwater fish diversity in China. J. Fish Biol. 2024, 104, 345–364. [Google Scholar] [CrossRef]
- Huang, Z. Drifting with Flow versus Self-Migrating-How Do Young Anadromous Fish Move to the Sea? iScience 2019, 19, 772–785. [Google Scholar] [CrossRef]
- Chen, J.; Zhuang, P.; Wu, J.; Huang, S.; Liu, J.; Yang, J.; Xu, J.; Zheng, Y.; Zhao, F.; Zhang, T. Migration and distribution of released Acipenser sinensis in the sea based on Pop-up Archival Tag technique. J. Fish. Sci. China 2011, 18, 437–442. [Google Scholar] [CrossRef]
- Wang, C.; Du, H.; Liu, M.; Wei, Q.; Zhang, H.; Wu, J.; Liu, Z.; Shen, L. Migrations and Distributions of Chinese Sturgeon Released in the Sea of Xiamen. Sci. Sin. 2016, 46, 294–303. [Google Scholar] [CrossRef]
- Qiwei, W. Conservation of Chinese sturgeon (Acipenser sinensis) based on its life history:Dilemma and breakthrough. J. Lake Sci. 2020, 32, 1297–1319. [Google Scholar] [CrossRef]
- Breece, M.W.; Oliver, M.J.; Fox, D.A.; Hale, E.A.; Haulsee, D.E.; Shatley, M.; Bograd, S.J.; Hazen, E.L.; Welch, H. A satellite-based mobile warning system to reduce interactions with an endangered species. Ecol. Appl. 2021, 31, e02358. [Google Scholar] [CrossRef]
- Yang, D.; Wei, Q.; Wang, K.; Chen, X.; Zhu, Y. Downstream Migration of Tag-Released Juvenile Chinese Sturgeon (Acipenser sinensis) in the Yangtze River. Acta Hydrobiol. Sin. 2005, 29, 26–30. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Gao, C. Research on the downstream migration and distribution characteristics of Chinese sturgeon in the Yangtze Estuary based on tagging and releasing information. J. Fish. Sci. China 2021, 28, 1559–1567. [Google Scholar]
- Zhao, F.; Wang, S.; Zhang, T.; Yang, G.; Wang, Y.; Zhuang, P. Food composition of Acipenser sinensis in the coastal waters of the Yangtze Estuary in spring. Mar. Fish. 2017, 39, 427–432. [Google Scholar]
- Li, H. Discussion on the Conservation of Chinese Sturgeon. Acta Hydrobiol. Sin. 2024, 48, 1603–1609. [Google Scholar]
- Wang, L.; Dai, A.; Dai, Y.; Lu, L.; Li, X.; Zhao, J.; Li, K. Comprehensive ecological risk assessment method for multi-pesticide pollution in the Bohai Sea and Yellow Sea, China. Mar. Pollut. Bull. 2025, 214, 117781. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, J.; Zhan, Z.; Zhao, Y.; Zhou, Q.; Peng, J.; Li, Y.; Xiao, X.; Wang, J. Abundant small microplastics hidden in water columns of the Yellow Sea and East China Sea: Distribution, transportation and potential risk. J. Hazard. Mater. 2024, 478, 135531. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhang, K.; Li, X.; Chen, Z. Enhanced Fishing Monitoring in the Central-Eastern North Pacific Using Deep Learning with Nightly Remote Sensing. Remote Sens. 2024, 16, 4312. [Google Scholar] [CrossRef]
- Ruan, Q.; Pan, D.; Wang, D.; He, X.; Gong, F.; Tian, Q. Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning. Remote Sens. 2025, 17, 1755. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, T.; Sun, G.; Zhu, W.; Liu, Q.; Liu, Y.; Jin, X.; Weng, N. A Comprehensive Ensemble Model for Marine Atmospheric Boundary-Layer Prediction in Meteorologically Sparse and Complex Regions: A Case Study in the South China Sea. Remote Sens. 2025, 17, 2046. [Google Scholar] [CrossRef]
- Zainuddin, M.; Safruddin, S.; Farhum, A.; Budimawan, B.; Hidayat, R.; Selamat, M.B.; Wiyono, E.S.; Ridwan, M.; Syamsuddin, M.; Ihsan, Y.N. Satellite-Based Ocean Color and Thermal Signatures Defining Habitat Hotspots and the Movement Pattern for Commercial Skipjack Tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sens. 2023, 15, 1268. [Google Scholar] [CrossRef]
- Eleftherios, K.; Ratilal, P.; Makris, N.C. Optimal Automatic Wide-Area Discrimination of Fish Shoals from Seafloor Geology with Multi-Spectral Ocean Acoustic Waveguide Remote Sensing in the Gulf of Maine. Remote Sens. 2023, 15, 437. [Google Scholar] [CrossRef]
- Yu, T.; Peng, X.; Wang, Y.; Xu, S.; Liang, C.; Wang, Z. Green tide cover area monitoring and prediction based on multi-source remote sensing fusion. Mar. Pollut. Bull. 2025, 215, 117921. [Google Scholar] [CrossRef]
- Morrison, M.L.; Marcot, B.; Mannan, W. Wildlife-Habitat Relationships: Concepts and Applications; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Arenas-Castro, S.; Sillero, N. Cross-scale monitoring of habitat suitability changes using satellite time series and ecological niche models. Sci. Total Environ. 2021, 784, 147172. [Google Scholar] [CrossRef]
- Kaschner, K.; Watson, R.; Trites, A.W.; Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 2006, 316, 285–310. [Google Scholar] [CrossRef]
- Ban, X.; Du, Y.; Liu, H.; Ling, F. Applying Instream Flow Incremental Method for the Spawning Habitat Protection of Chinese Sturgeon (Acipenser sinensis). River Res. Appl. 2011, 27, 87–98. [Google Scholar] [CrossRef]
- Ray, N.; Burgman, M.A. Subjective uncertainties in habitat suitability maps. Ecol. Model. 2006, 195, 172–186. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M.; Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 2008, 14, 885–890. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, K.; Liao, J.; Lin, H.; Sun, X.; Kang, J.; Wu, C.; He, X. Potential habitat analysis and conservation strategies of amphioxus (lancelets) based on MaxEnt model in Huangcuo area. J. Appl. Oceanogr. 2024, 43, 696–707. [Google Scholar]
- Li, D.; Dai, P.; Yu, Y.; Liu, Y.; Zhong, L.; Wang, C. Predicting Potential Geographical Distribution of Gambusia Affinis in Jiangsu Province Using MaxEnt Model. J. Aquac. 2025, 46, 1–6. [Google Scholar]
- Liu, H.; Li, P.; Leng, X.; Jiang, M.; Shen, L.; Wang, P.; Zhang, H.; Luo, J.; Xiong, W.; Liu, Y.; et al. Exploring the adaptive behaviour and environmental acclimation of artificially-bred Chinese sturgeon (Acipenser sinensis) in semi-open marine environment: Insights for endangered species conservation. Rev. Fish Biol. Fish. 2024, 34, 1489–1509. [Google Scholar] [CrossRef]
- Xu, M.; Feng, W.; Liu, Z.; Li, Z.; Song, X.; Zhang, H.; Zhang, C.; Yang, L. Seasonal-Spatial Distribution Variations and Predictions of Loliolus beka and Loliolus uyii in the East China Sea Region: Implications from Climate Change Scenarios. Animals 2024, 14, 2070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, C.; Cao, L. Mapping the biodiversity conservation gaps in the East China sea. J. Environ. Manag. 2023, 336, 117667. [Google Scholar] [CrossRef]
- Corrales, X.; Preciado, I.; Gascuel, D.; de Gamiz-Zearra, A.L.; Hernvann, P.-Y.; Mugerza, E.; Louzao, M.; Velasco, F.; Doray, M.; López-López, L. Structure and functioning of the Bay of Biscay ecosystem: A trophic modelling approach. Estuar. Coast. Shelf Sci. 2022, 264, 107658. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Grüss, A.; Pirtle, J.L.; Thorson, J.T.; Lindeberg, M.R.; Neff, A.D.; Lewis, S.G.; Essington, T.E. Modeling nearshore fish habitats using Alaska as a regional case study. Fish. Res. 2021, 238, 105905. [Google Scholar] [CrossRef]
- Ji-Yu, C.; Shen-Liang, C. Estuarine and coastal challenges in China. Chin. J. Oceanol. Limnol. 2002, 20, 174–181. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Li, X. Modeling the impacts of climate change on epifauna distribution in the southern Yellow Sea and East China Sea. Sci. Total Environ. 2025, 981, 179624. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, X.; Wang, F.; Cheng, H.; Luo, Y.; Li, Z.; Ren, Z.; Ding, W.; Wu, J.; Jiang, H.; et al. Trends in Fishery Ecosystem Stability in the East China Sea under Dual Pressures of Fishing and Global Warming. Environ. Sci. Technol. 2025, 59, 12596–12605. [Google Scholar] [CrossRef]
- Zhao, F.; Zhuang, P.; Zhang, T.; Wang, Y.; Hou, J.; Liu, J.; Zhang, L. Isosmotic points and their ecological significance for juvenile Chinese sturgeon Acipenser sinensis. J. Fish Biol. 2015, 86, 1416–1420. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Q.; Yang, D.; Tang, G.; Du, H.; Zhu, Y. The effect of some water parameters on the oxygen consumption rate of embryos and larvae of the Chinese Sturgeon (Acipenser sinensis). J. Appl. Ichthyol. 2006, 22, 244–247. [Google Scholar] [CrossRef]
- Regaudie-de-Gioux, A.; Duarte, C.M. Global patterns in oceanic planktonic metabolism. Limnol. Oceanogr. 2013, 58, 977–986. [Google Scholar] [CrossRef]
- Sajan; Sasmal, S.K.; Dubey, B. A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food. Chaos 2022, 32, 013114. [Google Scholar] [CrossRef]
- Doi, H. Resource productivity and availability impacts for food-chain length. Ecol. Res. 2012, 27, 521–527. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef]
- Cao, S.; Xiao, F.; Chen, M.; Wang, Z.; Luo, J.; Du, Y. Inversion and analysis of transparency changes in the eastern coastal waters of China from 2003 to 2023 by an improved QAA-based method. Front. Mar. Sci. 2024, 11, 1503177. [Google Scholar] [CrossRef]
- Runde, B.J.; Buckel, J.A.; Bacheler, N.M.; Tharp, R.M.; Rudershausen, P.J.; Harms, C.A.; Ben-Horin, T. Evaluation of six methods for external attachment of electronic tags to fish: Assessment of tag retention, growth, and fish welfare. J. Fish Biol. 2022, 101, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, H.; Xu, J.; Fan, H.; Ni, C.; Peng, S. Artificially bred adult Chinese sturgeon (Acipenser sinensis) can migrate upstream along the Yangtze River after being released into the Yangtze River Estuary. J. Lake Sci. 2025, 37, 1–11. [Google Scholar]
- Xiang, J.; Cui, T.; Qing, S.; Liu, R.; Chen, Y.; Mu, B.; Zhang, X.; Zhao, W.; Ma, Y.; Zhang, J. Remote sensing retrieval of water clarity in clear oceanic to extremely turbid coastal waters from multiple spaceborne sensors. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Yin, Z.; Li, J.; Liu, Y.; Xie, Y.; Zhang, F.; Wang, S.; Sun, X.; Zhang, B. Water clarity changes in Lake Taihu over 36 years based on Landsat TM and OLI observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102457. [Google Scholar] [CrossRef]
- Chen, M.M.; Xiao, F.; Wang, Z.; Feng, Q.; Ban, X.; Zhou, Y.D.; Hu, Z.Z. An Improved QAA-Based Method for Monitoring Water Clarity of Honghu Lake Using Landsat TM, ETM plus and OLI Data. Remote Sens. 2022, 14, 3798. [Google Scholar] [CrossRef]
- Sharifian, S.; Mortazavi, M.S.; Nozar, S.L.M. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Environ. Sci. Pollut. Res. Int. 2023, 30, 75300–75313. [Google Scholar] [CrossRef]
- Nguyen, B.D.; Messick, J.; Rodger, A.W.; Jackson, V.; Butler, C.; Taylor, A.T. Lumping and Splitting of Distribution Models Across a Biogeographic Divide Informs the Conservation of an Imperiled Fluvial Fish. Ecol. Evol. 2025, 15, e71315. [Google Scholar] [CrossRef]
- Li, G.; Gao, P.; Wang, F. Estimation of ocean primary productivity and its spatio-temporal variation mechanism for East China Sea based on VGPM model. J. Geogr. Sci. 2004, 14, 32–40. [Google Scholar] [CrossRef]
- Fu, Q.; Yan, X.; Hong, Q.; Lin, L.; Zhang, Y. Variability of the Primary Productivity in the Yellow and Bohai Seas from 2003 to 2020 Based on the Estimate of Satellite Remote Sensing. J. Mar. Sci. Eng. 2023, 11, 684. [Google Scholar] [CrossRef]
- Harrison, T.; Whitfield, A. Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Estuar. Coast. Shelf Sci. 2006, 66, 335–345. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J. Analyzing the combined effect of multiple environmental factors on fish distribution, by means of the mixed distribution–decomposition approach, as illustrated by the east China sea hairtail. Biology 2023, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.-Y.; Su, N.-J.; Lee, M.-A.; Lan, K.-W.; Chang, Y.; Weng, J.-S.; Wang, Y.-C.; Sihombing, R.I.; Vayghan, A.H. Modeling the habitat distribution of Acanthopagrus schlegelii in the Coastal Waters of the Eastern Taiwan Strait using MAXENT with fishery and remote sensing data. J. Mar. Sci. Eng. 2021, 9, 1442. [Google Scholar] [CrossRef]
- Li, G.; Xiong, Y.; Zhong, X.; Song, D.; Kang, Z.; Li, D.; Tang, J.; Wang, Y.; Wu, L. Changes in overwintering ground of small yellow croaker (Larimichthys polyactis) based on MaxEnt and GARP models: A case study of the southern Yellow Sea stock. J. Fish Biol. 2023, 102, 1358–1372. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Guo, J. Seasonal variability of the sea surface salinity in the East China Sea during 1990–2002. J. Geophys. Res. Oceans 2006, 111, C05008. [Google Scholar] [CrossRef]
- Li, W. Mechanisms of Salinity Effects on Growth Performance Andisosmotic Point Calculation in Anadromous Fish, Chinese Sturgeon (Acipenser sinensis). Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2014. [Google Scholar]
- Li, W.; Liu, Z.; Zhai, F.; Wu, W.; Gu, Y.; Liu, C. Seasonal variations in the bottom dissolved oxygen concentration in the Bohai Sea. Mar. Sci. 2024, 48, 56–69. [Google Scholar]
- Lutze, P.; Brenmoehl, J.; Tesenvitz, S.; Ohde, D.; Wanka, H.; Meyer, Z.; Grunow, B. Effects of Temperature Adaptation on the Metabolism and Physiological Properties of Sturgeon Fish Larvae Cell Line. Cells 2024, 13, 269. [Google Scholar] [CrossRef]
- Qin, S.; Leng, X.; Luo, J.; Du, H.; Liu, Z.; Qiao, X.; Xiong, W.; Wei, Q. Growth and Physiological Characteristics of Juvenile Chinese Sturgeon (Acipenser sinensis) during Adaptation to Seawater. Aquac. Res. 2020, 51, 3813–3821. [Google Scholar] [CrossRef]
- Zhao, F.; Qu, L.; Zhuang, P.; Zhang, L.; Liu, J.; Zhang, T. Salinity tolerance as well as osmotic and ionic regulation in juvenile Chinese sturgeon (Acipenser sinensis Gray, 1835) exposed to different salinities. J. Appl. Ichthyol. 2011, 27, 231–234. [Google Scholar] [CrossRef]
- Allen, P.J.; McEnroe, M.; Forostyan, T.; Cole, S.; Nicholl, M.M.; Hodge, B.; Cech Jr, J.J. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris. J. Comp. Physiol. B 2011, 181, 1045–1062. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, Y.; Wei, Q.; Chen, X.; Liu, J.; Wang, K. Acclimation experiment of sub-adult Chinese sturgeon (Acipenser sinensis Gray) from fresh water culture in sea water. Mar. Fish. Res. 2007, 28, 120–124. [Google Scholar]
- Ban, X.; Li, D.; Li, D. Application of habitat suitability criteria on spawn-sites of Chinese sturgeon in downstream of Gezhouba Dam. Eng. J. Wuhan Univ. 2009, 42, 172–177. [Google Scholar]
- Liu, H. Study on Survival Adaptability of Artificial Preserved Chinese Sturgeon (Acipenser sinensis) in Bailong Island Marine Ranch. Master’s Thesis, Yangtze University, Jingzhou, China, 2023. [Google Scholar]
- Hama, T.; Shin, K.; Handa, N. Spatial variability in the primary productivity in the East China Sea and its adjacent waters. J. Oceanogr. 1997, 53, 41–51. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.; Xie, C.; Zhang, X. Effects of Water Temperature on Serum Content of Reactive Oxygen Species Antioxidant Defense System in Chinese Sturgeon, Acipenser sinensis. Acta Hydrobiol. Sin. 2008, 32, 327–332. [Google Scholar] [CrossRef]
- Feng, G.; Zhuang, P.; Zhang, L.; Hou, J.; Liu, J.; Zhang, T. Effects of water temperature on biochemical parameters of juvenile Chinese sturgeon (Acipenser sinensis) blood. Chin. J. Ecol. 2010, 29, 1973–1978. [Google Scholar]
- Zhang, H.; Wei, Q.; Yang, D.; Du, H.; Zhang, H.; Chen, X. An observation on water current profiles of spawning of Acipenser sinensis downward Gezhouba Dam. J. Fish. Sci. China 2007, 14, 183–191. [Google Scholar]
- Gao, X.; Jiang, Y.; Yuan, X.; Yang, L.; Ling, J.; Li, S. Modeling spatio-temporal variations in the habitat utilization of swordtip squid (Uroteuthis edulis) in the East China Sea and Southern Yellow Sea. Animals 2023, 13, 3492. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, H.; Fang, X.; Huang, W.; Zhang, Y.; Qian, J. Influence of water masses and environmental variables on fish community in the south bank of Yangtze River Estuary, China. Front. Mar. Sci. 2025, 12, 1530410. [Google Scholar] [CrossRef]
- Wang, D.; Yao, L.; Yu, J.; Chen, P. The role of environmental factors on the fishery catch of the squid uroteuthis chinensis in the pearl river estuary, China. J. Mar. Sci. Eng. 2021, 9, 131. [Google Scholar] [CrossRef]
- Wanjari, R.N. Assessment of Productivity and Trophic Structure of Mumbai Coastal Waters: A Remote Sensing and Trawl Based Approach. Ph.D. Thesis, Central Institute of Fisheries Education, Mumbai, India, 2020. [Google Scholar]
- Hidalgo, M.; Secor, D.H.; Browman, H.I. Observing and managing seascapes: Linking synoptic oceanography, ecological processes, and geospatial modelling. ICES J. Mar. Sci. 2016, 73, 1825–1830. [Google Scholar] [CrossRef]
- Pons, M.; Watson, J.T.; Ovando, D.; Andraka, S.; Brodie, S.; Domingo, A.; Fitchett, M.; Forselledo, R.; Hall, M.; Hazen, E.L. Trade-offs between bycatch and target catches in static versus dynamic fishery closures. Proc. Natl. Acad. Sci. USA 2022, 119, e2114508119. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Fang, L.; Chen, T.; Liu, W. Long-term variations in habitat use of humpback dolphins due to anthropogenic activities in western pearl river estuary. Animals 2024, 14, 3381. [Google Scholar] [CrossRef]
- Rodriguez-Burgos, A.M.; Briceño-Zuluaga, F.J.; Jiménez, J.L.Á.; Hearn, A.; Peñaherrera-Palma, C.; Espinoza, E.; Ketchum, J.; Klimley, P.; Steiner, T.; Arauz, R. The impact of climate change on the distribution of Sphyrna lewini in the tropical eastern Pacific. Mar. Environ. Res. 2022, 180, 105696. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.K.-F.; Cheng, I.-J.; Zhou, T.; Wang, H.-J.; Gu, H.-X.; Song, X.-J. A comprehensive overview of the population and conservation status of sea turtles in China. Chelonian Conserv. Biol. 2007, 6, 185–198. [Google Scholar] [CrossRef]
- Hays, G.C.; Bailey, H.; Bograd, S.J.; Bowen, W.D.; Campagna, C.; Carmichael, R.H.; Casale, P.; Chiaradia, A.; Costa, D.P.; Cuevas, E. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 2019, 34, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.A.; Wells, W.G.; Mattingly, H.T. A Large-Scale MaxEnt Model for the Distribution of the Endangered Pygmy Madtom. J. Fish Wildl. Manag. 2022, 13, 437–446. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How fast are the oceans warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jin, S.; Zhang, H.; Fan, W.; Tang, F.; Yang, S. Distribution of bottom trawling effort in the Yellow Sea and East China Sea. PLoS ONE 2016, 11, e0166640. [Google Scholar] [CrossRef]
- Desprez, M. Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: Short-and long-term post-dredging restoration. Ices J. Mar. Sci. 2000, 57, 1428–1438. [Google Scholar] [CrossRef]
- Koehn, E.E.; Münnich, M.; Vogt, M.; Desmet, F.; Gruber, N. Strong habitat compression by extreme shoaling events of hypoxic waters in the Eastern Pacific. J. Geophys. Res. Oceans 2022, 127, e2022JC018429. [Google Scholar] [CrossRef]
- Oh, J.-W.; Pushparaj, S.S.C.; Muthu, M.; Gopal, J. Review of harmful algal blooms (HABs) causing marine fish kills: Toxicity and mitigation. Plants 2023, 12, 3936. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yang, Y.; Zhao, P.; Wei, D.; Gao, J.; Sun, P.; Huang, Z.; Jia, J. Impact of ship traffic on the characteristics of shelf sediments: An anthropocene prospective. Front. Mar. Sci. 2021, 8, 678845. [Google Scholar] [CrossRef]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- Liu, J.; Yu, W.; Sui, Z.; Zhou, C. The Impact of Offshore Wind Farm Construction on Maritime Traffic Complexity: An Empirical Analysis of the Yangtze River Estuary. J. Mar. Sci. Eng. 2024, 12, 2232. [Google Scholar] [CrossRef]
- Mooney, T.A.; Andersson, M.H.; Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 2020, 33, 82–95. [Google Scholar] [CrossRef]
Habitat Factor Type | Factor | Spatiotemporal Resolution | Source | Time Series Length |
---|---|---|---|---|
Physiology-based | Sea Surface Temperature (SST) | day/0.083° | NASA ocean color | 2003–2020 |
Bottom Temperature (BT) | day/0.083° | CMEMS | ||
Salinity | day/0.083° | |||
Biological | Net Primary Productivity (NPP) | day/0.083° | ||
Mass Content of Zooplankton expressed as Carbon (ZOOC) | day/0.083° | |||
Physical oceanographic | Eastward Seawater Velocity (EV) | day/0.083° | ||
Northward Seawater Velocity (NV) | day/0.083° | |||
Depth | 60 arc-second | NOAA | ||
Transparency | day/0.083° | Inversion |
SST | BT | Salinity | Transparency | Depth | EV | NV | NPP | ZOOC | |
---|---|---|---|---|---|---|---|---|---|
SST | 1.00 | −0.12 | 0.41 | 0.71 | −0.59 | 0.57 | 0.53 | −0.64 | −0.8 |
BT | −0.12 | 1.00 | −0.03 | −0.44 | 0.63 | −0.17 | −0.23 | 0.42 | 0.01 |
Salinity | 0.41 | −0.03 | 1.00 | 0.58 | −0.27 | 0.34 | 0.29 | −0.53 | −0.44 |
Transparency | 0.71 | −0.44 | 0.58 | 1.00 | −0.58 | 0.49 | 0.43 | −0.84 | −0.68 |
Depth | −0.59 | 0.63 | −0.27 | −0.58 | 1.00 | −0.3 | −0.34 | 0.49 | 0.39 |
EV | 0.57 | −0.17 | 0.34 | 0.49 | −0.3 | 1.00 | 0.69 | −0.43 | −0.5 |
NV | 0.53 | −0.23 | 0.29 | 0.43 | −0.34 | 0.69 | 1.00 | −0.39 | −0.48 |
NPP | −0.64 | 0.42 | −0.53 | −0.84 | 0.49 | −0.43 | −0.39 | 1.00 | 0.72 |
ZOOC | −0.80 | 0.01 | −0.44 | −0.68 | 0.39 | −0.5 | −0.48 | 0.72 | 1.00 |
SST | BT | Salinity | Transparency | Depth | EV | NV | NPP | ZOOC | |
---|---|---|---|---|---|---|---|---|---|
SST | 7.08 | −1.91 | 4.75 | 15.64 | −1797.65 | 0.16 | 0.19 | −1061.90 | −5.34 |
BT | −1.91 | 35.14 | −0.85 | −21.63 | 4259.49 | −0.10 | −0.18 | 1542.37 | 0.21 |
Salinity | 4.75 | −0.85 | 18.98 | 20.62 | −1365.31 | 0.16 | 0.17 | −1452.90 | −4.83 |
Transparency | 15.64 | −21.63 | 20.62 | 67.52 | −5442.68 | 0.42 | 0.48 | −4329.09 | −13.88 |
Depth | −1797.65 | 4259.49 | −1365.31 | −5442.68 | 1,315,440.30 | −36.13 | −53.39 | 348,679.31 | 1110.84 |
EV | 0.16 | −0.10 | 0.16 | 0.42 | −36.13 | 0.01 | 0.01 | −27.94 | −0.13 |
NV | 0.19 | −0.18 | 0.17 | 0.48 | −53.39 | 0.01 | 0.02 | −32.62 | −0.16 |
NPP | −1061.90 | 1542.37 | −1452.90 | −4329.09 | 348,679.31 | −27.94 | −32.62 | 388,847.83 | 1116.22 |
ZOOC | −5.34 | 0.21 | −4.83 | −13.88 | 1110.84 | −0.13 | −0.16 | 1116.22 | 6.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Dang, Y.; Ban, X.; Feng, Q.; Zhou, Y.; Luo, J.; Zhu, J.; Xiao, F. Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon. Remote Sens. 2025, 17, 2901. https://doi.org/10.3390/rs17162901
Cao S, Dang Y, Ban X, Feng Q, Zhou Y, Luo J, Zhu J, Xiao F. Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon. Remote Sensing. 2025; 17(16):2901. https://doi.org/10.3390/rs17162901
Chicago/Turabian StyleCao, Shuhui, Yingchao Dang, Xuan Ban, Qi Feng, Yadong Zhou, Jiahuan Luo, Jiazhi Zhu, and Fei Xiao. 2025. "Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon" Remote Sensing 17, no. 16: 2901. https://doi.org/10.3390/rs17162901
APA StyleCao, S., Dang, Y., Ban, X., Feng, Q., Zhou, Y., Luo, J., Zhu, J., & Xiao, F. (2025). Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon. Remote Sensing, 17(16), 2901. https://doi.org/10.3390/rs17162901