Mapping Soil Organic Matter in a Typical Black Soil Region Using Multi-Temporal Synthetic Images and Radar Indices Under Limited Bare Soil Windows
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Treatment
2.2.1. Soil Sample Collection and Processing
2.2.2. Sentinel-1 Images
2.2.3. Sentinel-2 Images
2.2.4. Environmental Covariates
2.2.5. SOC Raster Data
2.3. Methods
2.3.1. Median Synthesis Approach
2.3.2. Machine Learning Models
2.3.3. Validation
2.3.4. Uncertainty Analysis
2.4. Flowchart
3. Results
3.1. SOM Characterization and Remote Sensing Response Analysis
3.1.1. Descriptive Statistics of SOM Content
3.1.2. SOM Content and Relationship with Optical and Radar Images
3.2. SOM Prediction Results Under Different Groups
3.2.1. SOM Prediction Accuracy of Optical Images
3.2.2. SOM Prediction Accuracy of Optical and Radar Images
3.2.3. Comparison of SOM Prediction Accuracies
3.3. Optimal SOM Prediction Models for Different Groups
3.4. SOM Mapping and Uncertainty Analysis
3.4.1. SOM Mapping Based on the Optimal Model and Group
3.4.2. Uncertainty Analysis of SOM Mapping
4. Discussion
4.1. Influence of Crop Growth Information on SOM Prediction
4.2. Influencing Factors of SOM Spatial Distribution
4.3. Application of Multi-Source Remote Sensing Data on SOM Predictions
4.4. Accuracy of SOM Prediction by Machine Learning Models
4.5. Limitations and Future Research Progress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, X.B. China must protect high-quality arable land. Nature 2014, 506, 7. [Google Scholar] [CrossRef] [PubMed]
- Pravalie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Liu, H.J.; Wan, W.; Zheng, M.D.; Li, J.W.; Liu, S.W.; Lv, W.; Zhou, Y.X.; Liu, Z. Study on climate suitability for maize and technical implementation strategies under conservation tillage in Northeast China. Soil Tillage Res. 2025, 249, 106473. [Google Scholar] [CrossRef]
- Cui, J.W.; Yang, B.G.; Xu, X.P.; Ai, C.; Zhou, W. Long-term maize-soybean rotation in Northeast China: Impact on soil organic matter stability and microbial decomposition. Plant Soil 2025, 507, 141–158. [Google Scholar] [CrossRef]
- Li, X.Y.; Shi, Z.Y.; Xing, Z.H.; Wang, M.; Wang, M.C. Dynamic evaluation of cropland degradation risk by combining multi-temporal remote sensing and geographical data in the Black Soil Region of Jilin Province, China. Appl. Geogr. 2023, 154, 102920. [Google Scholar] [CrossRef]
- Cai, S.S.; Sun, L.; Wang, W.; Li, Y.; Ding, J.L.; Jin, L.; Li, Y.M.; Zhang, J.M.; Wang, J.K.; Wei, D. Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates. J. Integr. Agric. 2024, 23, 1703–1717. [Google Scholar] [CrossRef]
- Wang, L.; Qi, S.J.; Gao, W.F.; Luo, Y.; Hou, Y.P.; Liang, Y.; Zheng, H.B.; Zhang, S.M.; Li, R.P.; Wang, M.; et al. Eight-year tillage in black soil, effects on soil aggregates, and carbon and nitrogen stock. Sci. Rep. 2023, 13, 8332. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, X.L.; Liu, H.J.; Wu, D.Q.; Dou, X.; Xu, M.Y.; Jiang, Y. Remote sensing inversion of soil organic matter by using the subregion method at the field scale. Precis. Agric. 2022, 23, 1813–1835. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Zhang, P.; Jiao, X.; Lun, F.; Dong, S.W.; Lin, X.; Li, X.Y.; Sun, D.F. A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series. Remote Sens. 2022, 14, 1701. [Google Scholar] [CrossRef]
- Zhang, M.W.; Wang, X.Q.; Ding, X.G.; Yang, H.L.; Guo, Q.; Zeng, L.T.; Cui, Y.P.; Sun, X.L. Monitoring regional soil organic matter content using a spatiotemporal model with time-series synthetic Landsat images. Geoderma Reg. 2023, 34, e00702. [Google Scholar] [CrossRef]
- Song, J.; Yu, D.S.; Wang, S.W.; Zhao, Y.H.; Wang, X.; Ma, L.X.; Li, J.G. Mapping soil organic matter in cultivated land based on multi composite images on monthly time scales. J. Integr. Agric. 2024, 23, 1393–1408. [Google Scholar] [CrossRef]
- Wang, X.X.; Han, J.G.; Wang, X.; Yao, H.Y.; Zhang, L. Estimating Soil Organic Matter Content Using Sentinel-2 Imagery by Machine Learning in Shanghai. IEEE Access 2021, 9, 78215–78225. [Google Scholar] [CrossRef]
- Ayari, E.; Kassouk, Z.; Lili-Chabaane, Z.; Baghdadi, N.; Bousbih, S.; Zribi, M. Cereal Crops Soil Parameters Retrieval Using L-Band ALOS-2 and C-Band Sentinel-1 Sensors. Remote Sens. 2021, 13, 1393. [Google Scholar] [CrossRef]
- Lee, J.H.; Walker, J. Inversion of soil roughness for estimating soil moisture from time-series Sentinel-1 backscatter observations over Yanco sites. Geocarto Int. 2022, 37, 1850–1862. [Google Scholar] [CrossRef]
- He, Y.J.; Yin, H.Y.; Chen, Y.W.; Xiang, R.; Zhang, Z.T.; Chen, H.Y. Soil Salinity Estimation Based on Sentinel-1/2 Texture Features and Machine Learning. IEEE Sens. J. 2024, 24, 15302–15310. [Google Scholar] [CrossRef]
- Li, Z.W.; Liu, F.; Peng, X.Y.; Hu, B.G.; Song, X.D. Synergetic use of DEM derivatives, Sentinel-1 and Sentinel-2 data for mapping soil properties of a sloped cropland based on a two-step ensemble learning method. Sci. Total Environ. 2023, 866, 161421. [Google Scholar] [CrossRef] [PubMed]
- Dodin, M.; Levavasseur, F.; Savoie, A.; Martin, L.; Vaudour, E. Farm-scale mapping of compost and digestate spreadings from Sentinel-2 and Sentinel-1. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104555. [Google Scholar] [CrossRef]
- Yang, C.C.H.; Yang, L.; Zhang, L.; Zhou, C.H. Soil organic matter mapping using INLA-SPDE with remote sensing based soil moisture indices and Fourier transforms decomposed variables. Geoderma 2023, 437, 116571. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Zhang, Y.H.; Gao, L.R.; Wang, Y.H.; Wu, Z.X.; Zhang, W.Q.; Liu, H.J. Integration of bare soil and crop growth remote sensing data to improve the accuracy of soil organic matter mapping in black soil areas. Soil Tillage Res. 2024, 244, 106269. [Google Scholar] [CrossRef]
- Rukhovich, D.; Koroleva, P.; Rukhovich, A.; Komissarov, M. A detailed mapping of soil organic matter content in arable land based on the multitemporal soil line coefficients and neural network filtering of big remote sensing data. Geoderma 2024, 447, 116941. [Google Scholar] [CrossRef]
- Shi, P.; Six, J.; Sila, A.; Vanlauwe, B.; Van Oost, K. Towards spatially continuous mapping of soil organic carbon in croplands using multitemporal Sentinel-2 remote sensing. Isprs J. Photogramm. Remote Sens. 2022, 193, 187–199. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.Q.; Zhang, X.L.; Liu, H.J. Mapping soil organic matter content using Sentinel-2 synthetic images at different time intervals in Northeast China. Int. J. Digit. Earth 2023, 16, 1094–1107. [Google Scholar] [CrossRef]
- Rizzo, R.; Medeiros, L.G.; de Mello, D.C.; Marques, K.P.P.; Mendes, W.D.; Silvero, N.E.Q.; Dotto, A.C.; Bonfatti, B.R.; Demattê, J.A.M. Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil. Geoderma 2020, 361, 114018. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.Q.; Zhang, X.L.; Liu, H.J. Mapping of soil organic matter in a typical black soil area using Landsat-8 synthetic images at different time periods. Catena 2023, 231, 107336. [Google Scholar] [CrossRef]
- Mallick, J.; Ahmed, M.; Alqadhi, S.D.; Falqi, I.I.; Parayangat, M.; Singh, C.K.; Rahman, A.; Ijyas, T. Spatial stochastic model for predicting soil organic matter using remote sensing data. Geocarto Int. 2022, 37, 413–444. [Google Scholar] [CrossRef]
- Belenok, V.; Hebryn-Baidy, L.; Bielousova, N.; Zavarika, H.; Kryachok, S.; Liashenko, D.; Malik, T. Application of remote sensing methods for statistical estimation of organic matter in soils. Earth Sci. Res. J. 2023, 27, 299–312. [Google Scholar] [CrossRef]
- Wang, J.W.; Feng, C.H.; Hu, B.F.; Chen, S.C.; Hong, Y.S.; Arrouays, D.; Peng, J.; Shi, Z. A novel framework for improving soil organic matter prediction accuracy in cropland by integrating soil, vegetation and human activity information. Sci. Total Environ. 2023, 903, 166112. [Google Scholar] [CrossRef]
- Zhou, W.; Xiao, J.Y.; Li, H.R.; Chen, Q.; Wang, T.; Wang, Q.; Yue, T.X. Soil organic matter content prediction using Vis-NIRS based on different wavelength optimization algorithms and inversion models. J. Soils Sediments 2023, 23, 2506–2517. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Lu, Q.K.; Tian, S.; Wei, L.F. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Sci. Total Environ. 2023, 856, 159171. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.Z.; Li, T.Q. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef] [PubMed]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- NY/T 1121.6-2006; Soil Testing—Part 6: Method for Determination of Soil Organic Matter. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2006.
- HJ 717-2014; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2014.
- Chong, L.; Liu, H.J.; Lu, L.P.; Liu, Z.R.; Kong, F.C.; Zhang, X.L. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
- Wu, R.G.; Zhao, P.; Liu, G. Change in the contribution of spring snow cover and remote oceans to summer air temperature anomaly over Northeast China around 1990. J. Geophys. Res. Atmos. 2014, 119, 663–676. [Google Scholar] [CrossRef]
- Cao, Y.G.; Yan, L.J.; Zheng, Z.Z. Extraction of information on geology hazard from multi-polarization sar images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1529–1532. [Google Scholar]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Wittke, S.; Yu, X.W.; Karjalainen, M.; Hyyppä, J.; Puttonen, E. Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 167–178. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.J.; Wang, L.P.; Zheng, M.; Wang, Z.M.; Song, K.S. Effects of cropland reclamation on soil organic carbon in China’s black soil region over the past 35 years. Glob. Change Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, W.Q.; Zhang, X.L.; Liu, H.J. Mapping the soil organic matter content in a typical black-soil area using optical data, radar data and environmental covariates. Soil Tillage Res. 2024, 235, 105912. [Google Scholar] [CrossRef]
- Soil SubCenter. National Earth System Science Data Center, National Science & Technology Infrastructure of China. Available online: http://soil.geodata.cn (accessed on 1 June 2025).
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–374. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C.; Assoc Comp, M. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zhang, W.J.; Zhu, L.; Zhuang, Q.F.; Chen, D.; Sun, T. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture 2023, 13, 1592. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Chen, S.C.; Huang, J.Y.; Li, H.Y.; Biswas, A.; He, Y.; Shi, Z. Improving remote sensing of salinity on topsoil with crop residues using novel indices of optical and microwave bands. Geoderma 2022, 422, 115935. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.Y.; Lv, J.W.; Fang, H.J. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
- Qie, L.; Pu, L.J.; Tang, P.F.; Liu, R.J.; Huang, S.H.; Xu, F.; Zhong, T.Y. Gains and losses of farmland associated with farmland protection policy and urbanization in China: An integrated perspective based on goal orientation. Land Use Policy 2023, 129, 106643. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.P.; Li, S.J.; Wang, Z.M.; Zheng, M.; Song, K.S. Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model. Geoderma 2022, 425, 116066. [Google Scholar] [CrossRef]
- Ma, J.M.; Shi, P. Remotely sensed inter-field variation in soil organic carbon content as influenced by the cumulative effect of conservation tillage in northeast China. Soil Tillage Res. 2024, 243, 106170. [Google Scholar] [CrossRef]
- Xiang, X.Y.; Du, J.; Jacinthe, P.A.; Zhao, B.Y.; Zhou, H.H.; Liu, H.J.; Song, K.S. Integration of tillage indices and textural features of Sentinel-2A multispectral images for maize residue cover estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Vavlas, N.C.; Seubring, T.; Elhakeem, A.; Kooistra, L.; De Deyn, G.B. Remote sensing of cover crop legacies on main crop N-uptake dynamics. Eur. J. Soil Sci. 2024, 75, e13582. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.R.; Fu, P.; Shi, T.Z.; Dang, L.N.; Chen, Y.Y.; Linderman, M.; Zhang, G.L.; Zhang, Y.; Jiang, Q.H.; et al. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, T.E.; Li, Y.C.; Dai, C.; Fang, S.H.; Gong, Y.; Wu, X.T.; Zhu, R.S.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Niu, Y.X.; Cui, Z.H.; Chai, X.Y.; Xu, L.Z. Cross-Year Rapeseed Yield Prediction for Harvesting Management Using UAV-Based Imagery. Remote Sens. 2025, 17, 2010. [Google Scholar] [CrossRef]
- Kong, D.P.; Chu, N.C.; Luo, C.; Liu, H.J. Analyzing Spatial Distribution and Influencing Factors of Soil Organic Matter in Cultivated Land of Northeast China: Implications for Black Soil Protection. Land 2024, 13, 1028. [Google Scholar] [CrossRef]
- Liu, X.N.; Wang, M.C.; Liu, Z.W.; Li, X.Y.; Ji, X.; Wang, F.Y. Spatial and temporal evolution of soil organic matter and its response to dynamic factors in the Southern part of Black Soil Region of Northeast China. Soil Tillage Res. 2025, 248, 106475. [Google Scholar] [CrossRef]
- Li, R.; Hu, W.Y.; Jia, Z.J.; Liu, H.Q.; Zhang, C.; Huang, B.; Yang, S.H.; Zhao, Y.G.; Zhao, Y.C.; Shukla, M.K.; et al. Soil degradation: A global threat to sustainable use of black soils. Pedosphere 2025, 35, 264–279. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, S.F.; Wang, L.P.; Dai, X.L.; Zang, D.Q.; Qi, B.S.; Meng, X.T.; Mei, X.D.; Luo, C.; Liu, H.J. Systematic identification of factors influencing the spatial distribution of soil organic matter in croplands within the black soil region of Northeastern China across multiple scales. Catena 2025, 249, 108633. [Google Scholar] [CrossRef]
- Wang, X.; Song, K.S.; Wang, Z.M.; Li, S.J.; Shang, Y.X.; Liu, G. Effects of land conversion to cropland on soil organic carbon in montane soils of Northeast China from 1985 to 2020. Catena 2024, 235, 107691. [Google Scholar] [CrossRef]
- Liu, Y.; He, N.P.; Xu, L.; Tian, J.; Gao, Y.; Zheng, S.; Wang, Q.; Wen, X.F.; Xu, X.L.; Yakov, K. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biol. Biochem. 2019, 138, 107596. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, Z.; Cheng, G.Q. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy 2023, 125, 106496. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, X.B.; Tan, M.H.; Wang, X.; Xin, L.J. The impact of cultivated land spatial shift on food crop production in China, 1990-2010. Land Degrad. Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Goldewijk, K.K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.L.; Yao, F.M.; Meng, X.T.; Fan, J.X.; Zhang, J.H.; Liu, H.J.; Mouazen, A.M. Dynamic modeling of topsoil organic carbon and its scenarios forecast in global Mollisols regions. J. Clean. Prod. 2023, 421, 138544. [Google Scholar] [CrossRef]
- Azizi, K.; Garosi, Y.; Ayoubi, S.; Tajik, S. Integration of Sentinel-1/2 and topographic attributes to predict the spatial distribution of soil texture fractions in some agricultural soils of western Iran. Soil Tillage Res. 2023, 229, 105681. [Google Scholar] [CrossRef]
- Settu, P.; Ramaiah, M. Estimation of Sentinel-1 derived soil moisture using modified Dubois model. Environ. Dev. Sustain. 2024, 26, 29677–29693. [Google Scholar] [CrossRef]
- Li, H.C.; Van den Bulcke, J.; Mendoza, O.; Deroo, H.; Haesaert, G.; Dewitte, K.; Stefaan De, N.; Sleutel, S. Soil texture controls added organic matter mineralization by regulating soil moisture-evidence from a field experiment in a maritime climate. Geoderma 2022, 410, 115690. [Google Scholar] [CrossRef]
- Sanderman, J.; Baldock, J.A.; Dangal, S.R.S.; Ludwig, S.; Potter, S.; Rivard, C.; Savage, K. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 2021, 156, 97–114. [Google Scholar] [CrossRef]
- Bahureksa, W.; Tfaily, M.M.; Boiteau, R.M.; Young, R.B.; Logan, M.N.; McKenna, A.M.; Borch, T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environ. Sci. Technol. 2021, 55, 9637–9656. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.C.; Yu, Q.Y.; Cai, Z.J.; Zhou, Q.B.; Bellingrath-Kimura, S.D.; Wu, W.B. Improving digital mapping of soil organic matter in cropland by incorporating crop rotation. Geoderma 2023, 438, 116620. [Google Scholar] [CrossRef]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214, 141–154. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Z.P.; Li, X.Y.; Bao, Z.Y.; Zhao, N.; Yue, T.X. Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping. Ecol. Indic. 2021, 129, 107975. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; de Andrés, S.A. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef]
- Nolan, B.T.; Fienen, M.N.; Lorenz, D.L. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. J. Hydrol. 2015, 531, 902–911. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. Clean. Prod. 2018, 203, 810–821. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Guo, B.; Guo, X.N.; Zhang, B.; Suo, L.; Bai, H.R.; Luo, P.P. Using a Two-Stage Scheme to Map Toxic Metal Distributions Based on GF-5 Satellite Hyperspectral Images at a Northern Chinese Opencast Coal Mine. Remote Sens. 2022, 14, 5804. [Google Scholar] [CrossRef]
Topography | Percentage of Cultivated Land Area | Number of Sampling Points | Percentage of Sampling Points |
---|---|---|---|
Flat terrain | 33% | 31 | 28.70% |
Hilly terrain | 59% | 66 | 61.11% |
Mountainous terrain | 8% | 11 | 10.19% |
Data | Years | Months | Synthesis Mode |
---|---|---|---|
Sentinel-1 | 2019–2024 | May | Median |
2019–2024 | June–August | Median | |
2019–2024 | September–October | Median | |
Sentinal-2 | 2019–2024 | May | Median |
2019–2024 | June–August | Median | |
2019–2024 | September–October | Median |
Band Name | Wavelength (nm) | Resolution (m) |
---|---|---|
B1 (Aerosols) | 433–453 | 60 |
B2 (Blue) | 458–523 | 10 |
B3 (Green) | 543–578 | 10 |
B4 (Red) | 650–680 | 10 |
B5 (Red Edge 1) | 698–713 | 20 |
B6 (Red Edge 2) | 733–748 | 20 |
B7 (Red Edge 3) | 773–793 | 20 |
B8 (Near infrared) | 785–900 | 10 |
B8A (Red edge 4) | 855–875 | 20 |
B9 (Water vapor) | 935–955 | 60 |
B11 (Shortwave infrared 1) | 1565–1655 | 20 |
B12 (Shortwave infrared 2) | 2100–2280 | 20 |
Remote Sensing Indices | Acronyms | Calculation Formula |
---|---|---|
Normalized difference polarization index | NDPI | |
Polarization ratio | PR | |
Normalized difference vegetation index | NDVI |
Groups | Image Combination |
---|---|
Group 1 | May median image |
Group 2 | June–August median image |
Group 3 | September–October median image |
Group 4 | Group 1 and Group 2 overlay |
Group 5 | Group 1 and Group 3 overlay |
Group 6 | Group 1 and Group 2 and Group 3 overlay |
Models | Groups | Validation | Min | Max | Mean |
---|---|---|---|---|---|
BRT | Group 4 | R2 | 0.216 | 0.744 | 0.501 |
RMSE | 3.932 | 8.737 | 6.312 | ||
MAE | 3.343 | 6.051 | 4.928 | ||
ET | Group 2 | R2 | 0.013 | 0.654 | 0.406 |
RMSE | 3.166 | 8.669 | 6.425 | ||
MAE | 2.610 | 6.295 | 5.001 | ||
RF | Group 4 | R2 | 0.387 | 0.800 | 0.530 |
RMSE | 4.069 | 8.166 | 6.130 | ||
MAE | 3.500 | 6.128 | 4.822 | ||
XGBoost | Group 4 | R2 | 0.003 | 0.731 | 0.450 |
RMSE | 3.767 | 9.120 | 6.381 | ||
MAE | 2.952 | 7.174 | 4.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Chen, W.; Zhao, Z.; Li, L.; Zhang, R.; Yao, D.; Xie, T.; Xie, E.; Kong, X.; Ren, L. Mapping Soil Organic Matter in a Typical Black Soil Region Using Multi-Temporal Synthetic Images and Radar Indices Under Limited Bare Soil Windows. Remote Sens. 2025, 17, 2929. https://doi.org/10.3390/rs17172929
Zhang W, Chen W, Zhao Z, Li L, Zhang R, Yao D, Xie T, Xie E, Kong X, Ren L. Mapping Soil Organic Matter in a Typical Black Soil Region Using Multi-Temporal Synthetic Images and Radar Indices Under Limited Bare Soil Windows. Remote Sensing. 2025; 17(17):2929. https://doi.org/10.3390/rs17172929
Chicago/Turabian StyleZhang, Wencai, Wenguang Chen, Zhenting Zhao, Liang Li, Ruqian Zhang, Dongheng Yao, Tingting Xie, Enyi Xie, Xiangbin Kong, and Lisuo Ren. 2025. "Mapping Soil Organic Matter in a Typical Black Soil Region Using Multi-Temporal Synthetic Images and Radar Indices Under Limited Bare Soil Windows" Remote Sensing 17, no. 17: 2929. https://doi.org/10.3390/rs17172929
APA StyleZhang, W., Chen, W., Zhao, Z., Li, L., Zhang, R., Yao, D., Xie, T., Xie, E., Kong, X., & Ren, L. (2025). Mapping Soil Organic Matter in a Typical Black Soil Region Using Multi-Temporal Synthetic Images and Radar Indices Under Limited Bare Soil Windows. Remote Sensing, 17(17), 2929. https://doi.org/10.3390/rs17172929