Revealing the Impact of Urban Morphology Evolution on the Urban Heat Island Effect in the Main Urban Area of Guangzhou: Insights from Local Climate Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. OpenStreetMap Road Data
2.2.2. Sentinel-1/2
2.2.3. SRTM V3 Digital Elevation Data
2.2.4. Reference Building Height Data
2.2.5. Landsat 8
2.2.6. CLCD Data
2.3. Method
2.3.1. Building Height Estimation Using the SHAFTS Model
2.3.2. GIS-Based LCZ Mapping
2.3.3. LST Inversion
2.3.4. SUHII Calculation and Classification
2.3.5. Exploring the Influence of Urban Morphology on SUHI Across Different LCZs
3. Results
3.1. Building Height Estimation and Accuracy Assessment
3.2. Spatiotemporal Evolution of LCZs
3.3. Spatiotemporal Differences in Urban Thermal Environment
3.3.1. SUHII Classification
3.3.2. Inter-LCZ Thermal Characteristics Variations of SUHII
3.4. Impact of Urban Morphology on SUHII in Various LCZs
4. Discussion
4.1. Improving LCZ Mapping Accuracy with Building Height Data
Study/Dataset | Study Area | BH Acquisition Method | OA |
---|---|---|---|
This study | Main urban area of Guangzhou | Explicit retrieval | 88.37–92.49% |
So2Sat GUL [107] | Global | Implicit height-related features from SAR backscatter and coherence | 79% |
Ma et al. [105] | Shanghai, Nanjing, Hangzhou | / | 74%, 91.03%, 85.95% |
Ren et al. [33] | More 50 Chinese cities | DEM derived from Sentinel-1 InSAR data | ~80% (Guangzhou) |
4.2. Impacts of LCZ Transitions on the Urban Thermal Environment
4.3. Heterogeneous Effects of Urban Morphology on SUHI Across LCZ Types
4.4. Strengths and Limitations
5. Conclusions
- (1)
- Building height estimation errors in the main urban area of Guangzhou were controlled within a range of 5.92–7.03 m, indicating excellent model performance. The LCZ maps improved by incorporating building height data showed a high degree of similarity to high-resolution satellite imagery, accurately capturing morphology changes during urban renewal.
- (2)
- Built LCZ types were predominant in the study area, with an average proportion of 76.53%. From 2018 to 2021, LCZ conversions were characterized by the renewal of low- and mid-rise buildings, with LCZ 3 exhibiting the most significant changes. From 2021 to 2024, LCZ conversions mainly involved morphological adjustments of mid-rise buildings, with LCZ 5 experiencing the greatest transformation during this period.
- (3)
- The SUHI effect exhibited evident temporal variations, with low- and moderate-level SUHII showing a decreasing trend, while high and very high levels SUHII showed an overall increasing trend with fluctuations. Stronger SUHI effects were observed in built LCZ types, particularly LCZ 2 and LCZ 3. In contrast, the median SUHII of LCZ G continued to decline, reaching −3.0 °C.
- (4)
- Significant spatiotemporal heterogeneity was observed in the influence of urban morphology on SUHII across different built LCZ types. Although the importance of PSF declined over time, it consistently remained the core driving factor for SUHII. BSF also showed a steadily increasing importance, indicating its significant impact. Other variables, such as BR, BH, SVF, and BHCV, were influenced by urban renewal disturbances, resulting in fluctuating impacts across different years and LCZs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Jiang, H.; Liu, S. Research progress on urban heat island effect. J. Meteorol. Environ. 2013, 29, 101–106. [Google Scholar] [CrossRef]
- Hurduc, A.; Ermida, S.L.; DaCamara, C.C. On the suitability of different satellite land surface temperature products to study surface urban heat islands. Remote Sens. 2024, 16, 3765. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Huang, H.; Yang, H.; Deng, X.; Chen, T.; Jia, Q. Spatial evolution process of the impact of urban heat island on residents’ health. Remote Sens. Inf. 2021, 36, 38–46. [Google Scholar] [CrossRef]
- Li, P.; Qian, J.; Wei, Y. A review of urban heat island effect research based on modern remote sensing technology. North China Nat. Resour. 2020, 3, 63–66. [Google Scholar]
- Li, D.; Wang, L.; Liao, W.; Sun, T.; Katul, G.; Bou-Zeid, E.; Maronga, B. Persistent urban heat. Sci. Adv. 2024, 10, eadj7398. [Google Scholar] [CrossRef]
- Elmarakby, E.; Elkadi, H. Prioritising urban heat island mitigation interventions: Mapping a heat risk index. Sci. Total Environ. 2024, 948, 174927. [Google Scholar] [CrossRef]
- Huang, K.; Lee, X.; Stone, B.; Knievel, J.; Bell, M.L.; Seto, K.C. Persistent increases in nighttime heat stress from urban expansion despite heat island mitigation. J. Geophys. Res. Atmos. 2021, 126, e2020JD033831. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Mohiuddin, G.; Mund, J.-P. Spatiotemporal analysis of land surface temperature in response to land use and land cover changes: A remote sensing approach. Remote Sens. 2024, 16, 1286. [Google Scholar] [CrossRef]
- Mahata, B.; Sankar Sahu, S.; Sardar, A.; Laxmikanta, R.; Maity, M. Spatiotemporal dynamics of land use/land cover (LULC) changes and its impact on land surface temperature: A case study in New Town Kolkata, eastern India. Reg. Sustain. 2024, 5, 100138. [Google Scholar] [CrossRef]
- He, T.; Zhou, R.; Ma, Q.; Li, C.; Liu, D.; Fang, X.; Hu, Y.; Gao, J. Quantifying the effects of urban development intensity on the surface urban heat island across building climate zones. Appl. Geogr. 2023, 158, 103052. [Google Scholar] [CrossRef]
- Panigrahi, M.; Sharma, A. Urban growth dynamics and its influence on land surface temperature in Bhubaneswar metropolitan city: A 1990–2021 analysis. Discov. Appl. Sci. 2025, 7, 118. [Google Scholar] [CrossRef]
- Maheng, D.; Pathirana, A.; Bhattacharya, B.; Zevenbergen, C.; Lauwaet, D.; Siswanto, S.; Suwondo, A. Impact of land use land cover changes on urban temperature in Jakarta: Insights from an urban boundary layer climate model. Front. Environ. Sci. 2024, 12, 1399041. [Google Scholar] [CrossRef]
- Miky, Y.; Al Shouny, A.; Abdallah, A. Studying the impact of urban management strategies and spatiotemporal dynamics of LULC on land surface temperature and SUHI formation in Jeddah, Saudi Arabia. Sustainability 2023, 15, 15316. [Google Scholar] [CrossRef]
- Zhu, Q.; Ran, L.; Zhang, Y.; Guan, Q. Integrating geographic knowledge into deep learning for spatiotemporal local climate zone mapping derived thermal environment exploration across Chinese climate zones. ISPRS J. Photogramm. Remote Sens. 2024, 217, 53–75. [Google Scholar] [CrossRef]
- Huang, F.; Jiang, S.; Zhan, W.; Bechtel, B.; Liu, Z.; Demuzere, M.; Huang, Y.; Xu, Y.; Ma, L.; Xia, W. Mapping local climate zones for cities: A large review. Remote Sens. Environ. 2023, 292, 113573. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using local climate zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Wang, R.; Lu, T.; He, B.; Wang, F.; Huang, Q.; Qian, Z.; Min, J.; Li, Y. Seasonal urban surface thermal environment analysis based on local climate zones: A case study of Chongqing. Sci. Total Environ. 2024, 954, 176577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sheng, L.; Li, T. Spatiotemporal evolution of urban driving factors and seasonal heat island response from the perspective of local climate zones: A case study of Xiamen City, China. Remote Sens. 2025, 17, 1678. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef]
- Bechtel, B.; See, L.; Mills, G.; Foley, M. Classification of local climate zones using SAR and multispectral data in an arid environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3097–3105. [Google Scholar] [CrossRef]
- Brousse, O.; Martilli, A.; Foley, M.; Mills, G.; Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 2016, 17, 116–134. [Google Scholar] [CrossRef]
- Vavassori, A.; Oxoli, D.; Venuti, G.; Brovelli, M.A.; de Cumis, M.S.; Sacco, P.; Tapete, D. A combined remote sensing and GIS-based method for local climate zone mapping using PRISMA and sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103944. [Google Scholar] [CrossRef]
- Fan, P.Y.; He, Q.; Tao, Y.Z. Identifying research progress, focuses, and prospects of local climate zone (LCZ) using bibliometrics and critical reviews. Heliyon 2023, 9, e14067. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y. The urban morphology classification under local climate zone scheme based on the improved method: A case study of Changsha, China. Urban Clim. 2022, 45, 101271. [Google Scholar] [CrossRef]
- Ao, T.; Wang, M.; Wang, R.; Zhang, Z.; Gao, W.; Liu, X. The influence of different building height and density data on local climate zone classification. Remote Sens. Appl. Soc. Environ. 2025, 37, 101429. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Yoshida, T. Multiscale mapping of local climate zones in Tokyo using airborne LiDAR data, GIS vectors, and Sentinel-2 imagery. GIScience Remote Sens. 2023, 60, 2209970. [Google Scholar] [CrossRef]
- Wellinger, N.; Gubler, M.; Müller, F.; Brönnimann, S. GIS-based revision of a WUDAPT local climate zones map of Bern, Switzerland. City Environ. Interact. 2024, 21, 100135. [Google Scholar] [CrossRef]
- Ren, C.; Cai, M.; Li, X.; Zhang, L.; Wang, R.; Xu, Y.; Ng, E. Assessment of local climate zone classification maps of cities in China and feasible refinements. Sci. Rep. 2019, 9, 18848. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Ouyang, W.; Tan, Z. A multi-scale mapping approach of local climate zones: A case study in Hong Kong. Urban Clim. 2025, 61, 102446. [Google Scholar] [CrossRef]
- Quan, S.J.; Bansal, P. A systematic review of GIS-based local climate zone mapping studies. Build. Environ. 2021, 196, 107791. [Google Scholar] [CrossRef]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Ho, J.; Lau, K.; Ng, E. GIS-based mapping of local climate zone in the high-density city of Hong Kong. Urban Clim. 2018, 24, 419–448. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, B.; Hu, F.; Wei, C.; Dang, X.; Sun, D. Understanding the effects of 2D/3D urban morphology on land surface temperature based on local climate zones. Build. Environ. 2022, 208, 108578. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping local climate zones and their applications in European urban environments: A systematic literature review and future development trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Wu, W.-B.; Ma, J.; Banzhaf, E.; Meadows, M.E.; Yu, Z.-W.; Guo, F.-X.; Sengupta, D.; Cai, X.-X.; Zhao, B. A First Chinese Building Height Estimate at 10 m Resolution (CNBH-10 m) Using Mul-ti-Source Earth Observations and Machine Learning. Remote Sens. Environ. 2023, 291, 113578. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, X. A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities. Remote Sens. Environ. 2021, 264, 112590. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Ding, S.; Sun, X.; Qin, H.; Ji, J.; Zhang, R. Study on the relationship between urban street-greenery rate and land surface temperature considering local climate zone. Int. J. Environ. Res. Public Health 2023, 20, 3294. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Li, Q.; Yang, L.; Fan, H.; Wu, J.; Yu, B. Combining ICESat-2 photons and Google Earth satellite images for building height extraction. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103213. [Google Scholar] [CrossRef]
- Frantz, D.; Schug, F.; Okujeni, A.; Navacchi, C.; Wagner, W.; van der Linden, S.; Hostert, P. National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sens. Environ. 2021, 252, 112128. [Google Scholar] [CrossRef]
- Keany, E.; Bessardon, G.; Gleeson, E. Using machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zones. Adv. Sci. Res. 2022, 19, 13–27. [Google Scholar] [CrossRef]
- Che, Y.; Li, X.; Liu, X.; Wang, Y.; Liao, W.; Zheng, X.; Zhang, X.; Xu, X.; Shi, Q.; Zhu, J.; et al. 3D-GloBFP: The first global three-dimensional building footprint dataset. Earth Syst. Sci. Data 2024, 16, 5357–5374. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Liu, C.; Demuzere, M. Evolution of three-dimensional urban spatial morphology and planning responses to its surface heat island effect: A case study of Beijing. Urban Plan. Int. 2021, 36, 61–68. [Google Scholar] [CrossRef]
- Acosta-Fernández, G.A.; Martínez-Torres, K.E.; González-Trevizo, M.E.; Santamouris, M. Advances in urban mapping of local climate zones for heat mitigation: A systematic review. Land Use Policy 2025, 153, 107540. [Google Scholar] [CrossRef]
- Wang, B.; Gao, M.; Li, Y.; Li, Z.; Liu, Z.; Zhang, X.; Wen, Y. Unraveling the effects of extreme heat conditions on urban heat environment: Insights from local climate zones and integrated temperature data. Sustain. Cities Soc. 2025, 122, 106254. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, R.; Guo, Y. How urban spatial characteristics impact surface urban heat island in subtropical high-density cities based on LCZs: A case study of Macau. Sustain. Cities Soc. 2024, 112, 105587. [Google Scholar] [CrossRef]
- Wei, L.; Sobrino, J.A. Surface urban heat island analysis based on local climate zones using ECOSTRESS and Landsat data: A case study of Valencia City (Spain). Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103875. [Google Scholar] [CrossRef]
- O’Malley, C.; Kikumoto, H. An investigation into heat storage by adopting local climate zones and nocturnal-diurnal urban heat island differences in the Tokyo Prefecture. Sustain. Cities Soc. 2022, 83, 103959. [Google Scholar] [CrossRef]
- Quan, J. Multi-temporal effects of urban forms and functions on urban heat islands based on local climate zone classification. Int. J. Environ. Res. Public Health 2019, 16, 2140. [Google Scholar] [CrossRef]
- Yuan, B.; Li, X.; Zhou, L.; Bai, T.; Hu, T.; Huang, J.; Liu, D.; Li, Y.; Guo, J. Global distinct variations of surface urban heat islands in inter- and intra-cities revealed by local climate zones and seamless daily land surface temperature data. ISPRS J. Photogramm. Remote Sens. 2023, 204, 1–14. [Google Scholar] [CrossRef]
- Moix, E.; Giuliani, G. Mapping local climate zones (LCZ) change in the 5 largest cities of Switzerland. Urban Sci. 2024, 8, 120. [Google Scholar] [CrossRef]
- Li, N.; Yang, J.; Qiao, Z.; Wang, Y.; Miao, S. Urban thermal characteristics of local climate zones and their mitigation measures across cities in different climate zones of China. Remote Sens. 2021, 13, 1468. [Google Scholar] [CrossRef]
- Mo, N.; Han, J.; Yin, Y.; Zhang, Y. Seasonal analysis of land surface temperature using local climate zones in peak forest basin topography: A case study of Guilin. Build. Environ. 2024, 247, 111042. [Google Scholar] [CrossRef]
- Xu, H.; Sun, F.; Zeng, P.; Bao, X.; Che, Y. Impact of diurnal variation in 3D urban landscape metrics on land surface temperature in Shanghai: A local climate zone perspective. Energy Build. 2025, 336, 115624. [Google Scholar] [CrossRef]
- Guan, Y.; Quan, J.; Ma, T.; Cao, S.; Xu, C.; Guo, J. Identifying major diurnal patterns and drivers of surface urban heat island intensities across local climate zones. Remote Sens. 2023, 15, 5061. [Google Scholar] [CrossRef]
- Fu, L.; Li, X.-X.; Xin, R.; Min, M.; Dong, L. Diurnal and seasonal variation of surface heat island of local climate zones using FengYun-4A land surface temperature data. Urban Clim. 2025, 59, 102317. [Google Scholar] [CrossRef]
- Hou, X.; Xie, X.; Bagan, H.; Chen, C.; Wang, Q.; Yoshida, T. Exploring spatiotemporal variations in land surface temperature based on local climate zones in Shanghai from 2008 to 2020. Remote Sens. 2023, 15, 3106. [Google Scholar] [CrossRef]
- Wang, R.; Voogt, J.; Ren, C.; Ng, E. Spatial-temporal variations of surface urban heat island: An application of local climate zone into large Chinese cities. Build. Environ. 2022, 222, 109378. [Google Scholar] [CrossRef]
- Quanz, J.A.; Ulrich, S.; Fenner, D.; Holtmann, A.; Eimermacher, J. Micro-scale variability of air temperature within a local climate zone in Berlin, Germany, during summer. Climate 2018, 6, 5. [Google Scholar] [CrossRef]
- Lin, X.; Lin, X.; Yan, C. Inter- and intra-LCZ thermal heterogeneity: The dominant role of external environments in shaping local land surface temperature. Sustain. Cities Soc. 2025, 121, 106188. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, B.; Yu, X.; Zhang, Q.; Ren, Q. Comprehensive effect of the three-dimensional spatial distribution pattern of buildings on the urban thermal environment. Urban Clim. 2022, 46, 101324. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, G.; Ge, S.; Feng, F.; Li, P. Identification of key drivers of land surface temperature within the local climate zone framework. Land 2025, 14, 771. [Google Scholar] [CrossRef]
- Liu, Q.; Hang, T.; Wu, Y. Unveiling differential impacts of multidimensional urban morphology on heat island effect across local climate zones: Interpretable CatBoost-SHAP machine learning model. Build. Environ. 2025, 270, 112574. [Google Scholar] [CrossRef]
- Lemoine-Rodrã, R. Does urban climate follow urban form? Analysing intraurban LST trajectories versus urban form trends in 3 cities with different background climates. Sci. Total Environ. 2022, 830, 154570. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ishida, Y.; Mochida, A. Effective factors for reducing land surface temperature in each local climate zone built type in Tokyo and Shanghai. Remote Sens. 2023, 15, 3840. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, Y.; Li, Y.; Zhou, X.; Xie, Y. Exploration of influencing factors of land surface temperature in cities within the Beijing–Tianjin–Hebei region based on local climate zone scheme. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9728–9744. [Google Scholar] [CrossRef]
- Zhou, S.; Zheng, H.; Liu, X.; Gao, Q.; Xie, J. Identifying the effects of vegetation on urban surface temperatures based on urban–rural local climate zones in a subtropical metropolis. Remote Sens. 2023, 15, 4743. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Yu, K. Effects of block morphology on the surface thermal environment and the corresponding planning strategy using the geographically weighted regression model. Build. Environ. 2022, 216, 109037. [Google Scholar] [CrossRef]
- Ke, E.; Zhao, J.; Zhao, Y. Investigating the influence of nonlinear spatial heterogeneity in urban flooding factors using geographic explainable artificial intelligence. J. Hydrol. 2025, 648, 132398. [Google Scholar] [CrossRef]
- Grekousis, G. Geographical-XGBoost: A new ensemble model for spatially local regression based on gradient-boosted trees. J. Geogr. Syst. 2025, 27, 169–195. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Sheng, Z.; Wang, P.; Guan, F. Ecological network construction and identification of important elements based on morphological spatial pattern analysis and circuit theory in Pingxiang City. J. Nat. Conserv. 2025, 86, 126902. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Wu, Z.; Qian, Q.; Zheng, Z.; Huang, Q. Spatial heterogeneity of the thermal environment based on the urban expansion of natural cities using open data in Guangzhou, China. Ecol. Indic. 2019, 104, 524–534. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Su, Y.; Zhao, Q.; He, X.; Wu, Z.; Gao, W.; Wu, Z. Impact of block morphology on urban thermal environment with the consideration of spatial heterogeneity. Sustain. Cities Soc. 2024, 113, 105622. [Google Scholar] [CrossRef]
- Tang, J.; Xu, L.; Yu, H.; Jiang, H.; He, D.; Li, T.; Xiao, W.; Zheng, X.; Liu, K.; Li, Y.; et al. A dataset of multi-level street-block divisions of 985 cities worldwide. Sci. Data 2025, 12, 456. [Google Scholar] [CrossRef]
- Guo, H.; Shi, Q.; Du, B.; Zhang, L.; Wang, D.; Ding, H. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4287–4306. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Koppel, K.; Zalite, K.; Voormansik, K.; Jagdhuber, T. Sensitivity of Sentinel-1 backscatter to characteristics of buildings. Int. J. Remote Sens. 2017, 38, 6298–6318. [Google Scholar] [CrossRef]
- Van Zyl, J.J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronaut. 2001, 48, 559–565. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Loew, A.; Mauser, W. Generation of Geometrically and Radiometrically Terrain Corrected SAR Image Products. Remote Sens. Environ. 2007, 106, 337–349. [Google Scholar] [CrossRef]
- Pesaresi, M.; Politis, P. GHS-BUILT-H R2023A—GHS Building Height, Derived from AW3D30, SRTM30, and Sentinel-2 Composite (2018); European Commission, Joint Research Centre (JRC): 2023. [Dataset]. Available online: https://doi.org/10.2905/85005901-3A49-48DD-9D19-6261354F56FE (accessed on 17 May 2025).
- Zhang, Y.; Zhao, H.; Long, Y. CMAB: A Multi-Attribute Building Dataset of China. Sci. Data 2025, 12, 430. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Ce, W.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Kumar, B.P.; Babu, K.R.; Anusha, B.N.; Rajasekhar, M. Geo-Environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-Arid Regions Using Landsat 8 OLI/TIRS, LST, and NDVI Approach. Environ. Chall. 2022, 8, 100578. [Google Scholar] [CrossRef]
- Pande, C.B.; Egbueri, J.C.; Costache, R.; Sidek, L.M.; Wang, Q.; Alshehri, F.; Din, N.M.; Gautam, V.K.; Pal, S.C. Predictive Modeling of Land Surface Temperature (LST) Based on Landsat-8 Satellite Data and Machine Learning Models for Sustainable Development. J. Clean. Prod. 2024, 444, 141035. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m Annual Land Cover and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 3907–3925. [Google Scholar] [CrossRef]
- Li, R.; Sun, T.; Tian, F.; Ni, G.-H. SHAFTS (v2022.3): A deep-learning-based python package for simultaneous extraction of building height and footprint from Sentinel imagery. Geosci. Model Dev. 2023, 16, 751–778. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, G.; Jiang, L.; Chen, X.; Xie, T.; Wei, Y.; Xu, L.; Pan, Z.; An, P.; Lun, F. Mapping Local Climate Zones and Their Associated Heat Risk Issues in Beijing: Based on Open Data. Sustain. Cities Soc. 2021, 74, 103174. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Mapping local climate zones using ArcGIS-based method and exploring land surface temperature characteristics in Chenzhou, China. Sustainability 2020, 12, 2974. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Joseph, D. The NCEP/NCAR 40-year reanalysis project. In Renewable Energy; Routledge: Oxfordshire, UK, 2018; pp. Vol1_146–Vol1_194. [Google Scholar]
- Zhang, W.; Jia, R.; Tian, M.; Xu, X.; Liu, J.; Han, D.; He, T.; Sun, Z.; Cong, H.; Qiao, Z. Exploring the Diurnal Dynamics of Urban Thermal Environment Among and Within LCZ Classes Using ECOSTRESS. J. Geo-Inf. Sci. 2024, 26, 679–692. [Google Scholar] [CrossRef]
- Lu, Y.; He, T.; Xu, X.; Qiao, Z. Investigation the Robustness of Standard Classification Methods for Defining Urban Heat Islands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11386–11394. [Google Scholar] [CrossRef]
- Pan, L.; Lu, L.; Fu, P.; Nitivattananon, V.; Guo, H.; Li, Q. Understanding Spatiotemporal Evolution of the Surface Urban Heat Island in the Bangkok Metropolitan Region from 2000 to 2020 Using Enhanced Land Surface Temperature. Geomat. Nat. Hazards Risk 2023, 14, 2174904. [Google Scholar] [CrossRef]
- Yang, L.; Yang, X.; Zhang, H.; Ma, J.; Zhu, H.; Huang, X. Urban Morphological Regionalization Based on 3D Building Blocks—A Case in the Central Area of Chengdu, China. Comput. Environ. Urban Syst. 2022, 94, 101800. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Yao, X.; Yang, C.; Ye, D. How Does Urban Thermal Environmental Factors Impact Diurnal Cycle of Land Surface Temperature? A Multi-Dimensional and Multi-Granularity Perspective. Sustain. Cities Soc. 2024, 101, 105190. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Z.; Zhou, L.; Lu, H.; Yin, G. Local climate zones mapping using object-based image analysis and validation of its effectiveness through urban surface temperature analysis in China. Build. Environ. 2021, 206, 108348. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of local climate zones using ASTER and Landsat data for high-density cities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3397–3405. [Google Scholar] [CrossRef]
- Zhu, X.X.; Hu, J.; Qiu, C.; Shi, Y.; Kang, J.; Mou, L.; Bagheri, H.; Haberle, M.; Hua, Y.; Huang, R.; et al. So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones. IEEE Geosci. Remote Sens. Mag. 2020, 8, 76–89. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Dezső, Z.; Bartholy, J. Annual and Monthly Analysis of Surface Urban Heat Island Intensity with Respect to the Local Climate Zones in Budapest. Urban Clim. 2020, 31, 100573. [Google Scholar] [CrossRef]
- Wang, C.; Middel, A.; Myint, S.W.; Kaplan, S.; Brazel, A.J.; Lukasczyk, J. Assessing Local Climate Zones in Arid Cities: The Case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J. Photogramm. Remote Sens. 2018, 141, 59–71. [Google Scholar] [CrossRef]
- Zhang, L.; Nikolopoulou, M.; Guo, S.; Song, D. Impact of LCZs Spatial Pattern on Urban Heat Island: A Case Study in Wuhan, China. Build. Environ. 2022, 226, 109785. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, L.; Wu, C.; Zhang, Z.; Zhang, Z.; Lin, X.; Li, X.; Hu, Y.; Ge, H. Spatialized Importance of Key Factors Affecting Park Cooling Intensity Based on the Park Scale. Sustain. Cities Soc. 2023, 99, 104952. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y.; Herath, N.S.K.; Madduma Bandara, C.M.; Singh, R.K.; Fernando, S.L.J. Exploring the Cooling Effects of Urban Wetlands in Colombo City, Sri Lanka. Remote Sens. 2025, 17, 1919. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of Land Cover Types, Meteorological Conditions, Anthropogenic Heat and Urban Area on Surface Urban Heat Island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Tan, X.; Zhao, L.; Cai, Y.; Li, L. Assessing the Urban Heat Island Effect of Different Local Climate Zones in Guangzhou, China. Build. Environ. 2023, 244, 110770. [Google Scholar] [CrossRef]
- Peng, F.; Cao, Y.; Sun, X.; Zou, B. Study on the Contributions of 2D and 3D Urban Morphologies to the Thermal Environment under Local Climate Zones. Build. Environ. 2024, 263, 111883. [Google Scholar] [CrossRef]
- Luo, X.; Yu, C.W.; Zhou, D.; Gu, Z. Challenges and adaptation to urban climate change in China: A viewpoint of urban climate and urban planning. Indoor Built Environ. 2019, 28, 1157–1161. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The Urban Cool Island Phenomenon in a High-Rise High-Density City and Its Mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Qiao, Z.; Liu, L.; Qin, Y.; Xu, X.; Wang, B.; Liu, Z. The Impact of Urban Renewal on Land Surface Temperature Changes: A Case Study in the Main City of Guangzhou, China. Remote Sens. 2020, 12, 794. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, G.; Hu, Y.; Cao, B. Characterizing Urban Redevelopment Process by Quantifying Thermal Dynamic and Landscape Analysis. Habitat. Int. 2019, 86, 61–70. [Google Scholar] [CrossRef]
- Wu, P.; Zhong, K.; Wang, L.; Xu, J.; Liang, Y.; Hu, H.; Wang, Y.; Le, J. Influence of Underlying Surface Change Caused by Urban Renewal on Land Surface Temperatures in Central Guangzhou. Build. Environ. 2022, 215, 108985. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Yao, X.; Yang, C.; Yang, L. Exploring the Relationship between Thermal Environmental Factors and Land Surface Temperature of a “Furnace City” Based on Local Climate Zones. Build. Environ. 2023, 243, 110732. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G. Inequities in Thermal Comfort and Urban Blue-Green Spaces Cooling: An Explainable Machine Learning Study Across Residents of Different Socioeconomic Statuses in Hangzhou, China. Sustain. Cities Soc. 2025, 127, 106427. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of Urbanization-Related Land Use Land Cover Changes and Urban Morphology Changes on the Urban Heat Island Phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Xiang, Y.; Zheng, B.; Wang, J.; Gong, J.; Zheng, J. Research on the spatial-temporal evolution of Changsha’s surface urban heat island from the perspective of local climate zones. Land 2024, 13, 1479. [Google Scholar] [CrossRef]
Parameter | Definition | Method |
---|---|---|
Building Height (BH) | BH represents the area-weighted average building height within each grid, where n is the number of buildings in the given urban block, is the ground footprint area of the i-th building, and is its geometric height. | |
Building Surface Fraction (BSF) | BSF denotes the building surface fraction within a given urban block, where n is the number of buildings in the block, is the ground footprint area of the i-th building, and is the total area of the block. | |
Sky View Factor (SVF) | SVF represents the degree of openness within an urban block. In this study, SVF was calculated using the Horizon package in R, where α is the azimuth angle of rotation, and β is the elevation angle from the block center to the surrounding building walls. | |
Pervious Surface Fraction (PSF) | PSF is defined as the proportion of pervious surfaces within a given urban block, where is the area of pervious surfaces, identified as regions with an NDVI greater than 0.2, and is the total area of the block. |
Built Types | BH | BSF | SVF | PSF |
---|---|---|---|---|
LCZ 1—Compact high-rise | >25 | ≥0.4 | 0.1–0.25 | <0.1 |
LCZ 2—Compact mid-rise | 10–25 | ≥0.4 | 0.25–0.6 | <0.2 |
LCZ 3—Compact low-rise | <10 | ≥0.4 | 0.2–0.6 | <0.5 |
LCZ 4—Open high-rise | >25 | 0.1–0.4 | 0.4–0.7 | 0.1–0.7 |
LCZ 5—Open mid-rise | 10–25 | 0.1–0.4 | 0.4–0.8 | 0.2–0.7 |
LCZ 6—Open low-rise | <10 | 0.1–0.4 | 0.6–0.9 | 0.5–0.7 |
SUHII Level | Classification Thresholds |
---|---|
No SUHII | |
Very low | |
Low | |
Moderate | |
High | |
Very high |
Parameter | Definition | Method |
---|---|---|
Floor Area Ratio (FAR) | FAR is defined as the ratio of the total floor area within a block to its building footprint area. FAR is directly proportional to the number of floors in a building, with taller structures exhibiting higher FAR values. is the base area of a single building, is the number of floors in that building, and is the total plot area. | |
Building Roughness (BR) | BR quantifies the degree of irregularity in the micro-scale geometric morphology of building surfaces. is the height of building, is the average building height within the specified unit, and N is the total number of buildings in that unit. | |
Building Height Coefficient of Variation (BHCV) | BHCV is defined as the ratio of the standard deviation of building height within a unit to its average height, describing the degree of height variation. represents the standard deviation of building heights within the unit. | |
FLUctuation (FLU) | FLU denotes the difference between the maximum and minimum building height within the unit, reflecting the degree of vertical variation among buildings. |
SUHII | 2018 | 2021 | 2024 | |||
---|---|---|---|---|---|---|
Count | Ratio | Count | Ratio | Count | Ratio | |
No SUHII | 1142 | 23.98% | 1506 | 31.62% | 1426 | 29.94% |
Very low | 118 | 2.48% | 90 | 1.89% | 101 | 2.12% |
Low | 2151 | 45.16% | 1588 | 33.34% | 1774 | 37.5% |
Moderate | 747 | 15.68% | 683 | 14.34% | 670 | 14.07% |
High | 540 | 11.34% | 787 | 16.52% | 647 | 13.58% |
Very high | 65 | 1.36% | 109 | 2.29% | 145 | 3.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, L.; Huang, D.; Chen, L.; Yang, Y.; Luo, Y.; Liu, Y.; Na, J.; Ding, H. Revealing the Impact of Urban Morphology Evolution on the Urban Heat Island Effect in the Main Urban Area of Guangzhou: Insights from Local Climate Zones. Remote Sens. 2025, 17, 2959. https://doi.org/10.3390/rs17172959
Yang X, Yang L, Huang D, Chen L, Yang Y, Luo Y, Liu Y, Na J, Ding H. Revealing the Impact of Urban Morphology Evolution on the Urban Heat Island Effect in the Main Urban Area of Guangzhou: Insights from Local Climate Zones. Remote Sensing. 2025; 17(17):2959. https://doi.org/10.3390/rs17172959
Chicago/Turabian StyleYang, Xiaolong, Liqing Yang, Depeng Huang, Liang Chen, Yunhao Yang, Yi Luo, Yang Liu, Jiaming Na, and Hu Ding. 2025. "Revealing the Impact of Urban Morphology Evolution on the Urban Heat Island Effect in the Main Urban Area of Guangzhou: Insights from Local Climate Zones" Remote Sensing 17, no. 17: 2959. https://doi.org/10.3390/rs17172959
APA StyleYang, X., Yang, L., Huang, D., Chen, L., Yang, Y., Luo, Y., Liu, Y., Na, J., & Ding, H. (2025). Revealing the Impact of Urban Morphology Evolution on the Urban Heat Island Effect in the Main Urban Area of Guangzhou: Insights from Local Climate Zones. Remote Sensing, 17(17), 2959. https://doi.org/10.3390/rs17172959