Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review
Abstract
1. Introduction
- What is the paradigm shift from conventional to deep learning models for key HU subproblems (e.g., endmember extraction, abundance estimation)?
- What methodological frameworks and recent advances drive HU applications?
- Where do critical research gaps lie, and what future directions could improve HU effectiveness?
- (1)
- New taxonomy. This paper proposes a comprehensive new taxonomy that categorizes primary traditional and modern HU methods into distinct categories in recent years.
- (2)
- Comprehensive overview. This paper provides the progress in traditional-based HU from three main workflows: endmember number estimation, endmember extraction, and abundance estimation. It categorizes the conventional unmixing approaches in each step, considering their main characteristics. A summary of typical conventional HU algorithms from each category will be made. Then, we comprehensively introduce the progress in deep-learning-based HU from five main architectures: autoencoder, convolutional neural network, generative model, transformer, and recurrent neural network. In each architecture, we discuss the basic framework and main process or strategy to implement HU.
- (3)
- Future trends. We identify persistent challenges and propose research pathways to enhance HU robustness and performance, drawing insights from recent seminal studies in this field.
2. Traditional-Based HU Approaches
2.1. Endmember Number Estimation
2.1.1. Intrinsic Dimensionality-Based Algorithm (ID)
2.1.2. Likelihood Function-Based Algorithms
2.1.3. Eigenvalue Analysis-Based Method
2.1.4. Geometry-Based Algorithms
2.2. Endmember Extraction
2.2.1. Geometric Simplex Volume Methods
2.2.2. Statistical Error Methods
2.2.3. Spatial Projection Methods
2.2.4. Integrated Spatial Information Method
2.2.5. Sparse Regression Methods
2.2.6. Intelligent Endmember Extraction Algorithms
2.3. Abundance Estimation
2.3.1. Sparse Regression Algorithm
2.3.2. The Abundance Estimation Algorithm After Obtaining the Endmember Matrix
3. Deep Learning-Based HU Approaches
3.1. Autoencoders
3.1.1. Cascade Autoencoder
3.1.2. Sparse Autoencoder
3.1.3. Robust Autoencoder
3.1.4. Denoising Autoencoder
3.1.5. Two-Stream Autoencoder
3.1.6. Mask Autoencoder
3.1.7. Convolutional Autoencoder
3.1.8. Semi-Supervised Autoencoder
3.2. Convolutional Neural Network
3.3. Generative Model
3.4. Transformer
3.5. Recurrent Neural Network
4. Discussion
4.1. Limited Availability of Ground Truth and Training Data
4.2. Establishment of High-Precision Remote Sensing Mixing Model
4.3. Endmember Spectral Variability
4.4. Commercialization of Remote Sensing Products
4.5. Real-Time Performance of the Algorithm
5. Conclusions
5.1. Improved Uncertainty Estimation
5.2. Transfer Learning for Unmixing
5.3. Neuromorphic Computing for Edge Intelligence
5.4. Multi-Modal and Multi-Temporal Integration
5.5. Channel-Adaptive and Tuning-Free Foundation Large Models
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mukhtar, S.; Arbabi, A.; Viegas, J. Advances in Spectral Imaging: A Review of Techniques and Technologies. IEEE Access 2025, 13, 35848–35902. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Aburaed, N.; Alkhatib, M.; Marshall, S.; Zabalza, J.; Ahmad, H. A Review of Spatial Enhancement of Hyperspectral Remote Sensing Imaging Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2275–2300. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Liu, Z.; Xu, Y.; Quan, S.; Sun, L.; Wang, X. Deep Learning for Hyperspectral Image Classification: A Comprehensive Review and Future Predictions. Inform. Fusion 2025, 123, 103285. [Google Scholar] [CrossRef]
- Lodhi, V.; Chakravarty, D.; Mitra, P. Hyperspectral Imaging for Earth Observation: Platforms and Instruments. J. Indian Inst. Sci. 2018, 98, 429–443. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and Challenges in Intelligent Remote Sensing Satellite Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1814. [Google Scholar] [CrossRef]
- Qian, S.E. Hyperspectral Satellites, Evolution, and Development History. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Y.; Chen, J.; Guo, R.; Shu, R.; Wang, J. Status and Application of Advanced Airborne Hyperspectral Imaging Technology: A Review. Infrared Phys. Technol. 2020, 104, 103115. [Google Scholar] [CrossRef]
- Cocks, T.; Jenssen, R.; Stewart, W.I.; Shields, T. The HyMap Airborne Hyperspectral Sensor: The System, Calibration, and Performance. In Proceedings of the 1st EARSEL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6–8 October 1998; Available online: https://artefacts.ceda.ac.uk/neodc_docs/Hymap_specs.pdf (accessed on 7 August 2025).
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of Airborne and Satellite Hyperspectral Data for Geologic Mapping. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, Orlando, FL, USA, 1–5 April 2002. [Google Scholar]
- German Aerospace Center (Formerly DLR) and Teledyne Brown, TCloud: Teledyne Technologies. 2025. Available online: http://tcloudhost.com/ (accessed on 7 August 2025).
- Aneece, I.; Foley, D.; Thenkabail, P.; Oliphant, A.; Teluguntla, P. New Generation Hyperspectral Data from DESIS Compared to High Spatial Resolution PlanetScope Data for Crop Type Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7846–7858. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, S.; Zhang, L. Advances in Spaceborne Hyperspectral Remote Sensing in China. Geo-spat. Inf. Sci. 2021, 24, 95–120. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Cerra, D.; Pato, M.; Alonso, K.; Köhler, C.; Schneider, M.; de los Reyes, R.; Carmona, E.; Richter, R.; Kurz, F.; Reinartz, P.; et al. DLR HySU-A Benchmark Dataset for Spectral Unmixing. Remote Sens. 2021, 13, 2559. [Google Scholar] [CrossRef]
- Barma, S.; Damarla, S.; Tiwari, S. Semi-Automated Technique for Vegetation Analysis in Sentinel-2 Multi-Spectral Remote Sensing Images Using Python. In Proceedings of the 4th International Conference. Electronic Communications Aerospace Technology, Coimbatore, India, 5–7 November 2020; pp. 946–953. [Google Scholar]
- Mills, S. Evaluation of Aerial Remote Sensing Techniques for Vegetation Management in Power-Line Corridors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3379–3390. [Google Scholar] [CrossRef]
- Ciȩżkowski, W.; Sikorski, P.; Babańczyk, P.; Sikorska, D.; Chormański, J. Algorithm for Urban Spontaneous Green Space Detection Based on Optical Satellite Remote Sensing. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4430–4433. [Google Scholar]
- Benson, M.; Faundeen, J. The U.S. Geological Survey Remote Sensing and Geoscience Data: Using Standards to Serve US All. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium Taking Pulse Planet: Role Remote Sensing Manage Environmental, Honolulu, HI, USA, 24–28 July 2000; pp. 1202–1204. [Google Scholar]
- O’Connor, E.; McDonald, A. Applications of Remote Sensing for Geological Mapping in Eastern Egypt. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium Remote Sensing: Moving Toward 21st Century, Edinburgh, UK, 12–16 September 1988; pp. 631–632. [Google Scholar]
- Fu, B.; Shi, P.; Fu, H.; Ninomiya, Y.; Du, J. Geological Mapping Using Multispectral Remote Sensing Data in the Western China. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5583–5586. [Google Scholar]
- Lin, Y.; Zhang, L.; Wang, N. A New Time Series Change Detection Method for Landsat Land Use and Land Cover Change. In Proceedings of the 10th International Workshop Analysis Multitemporal Remote Sensing Images, Shanghai, China, 5–7 August 2019; pp. 1–4. [Google Scholar]
- Bounouh, O.; Essid, H.; Farah, I. Prediction of Land Use/Land Cover Change Methods: A Study. In Proceedings of the International Conference Advanced Technologies Signal and Image Processing, Fez, Morocco, 22–24 May 2017; pp. 1–7. [Google Scholar]
- Alem, A.; Kumar, S. Deep Learning Methods for Land Cover and Land Use Classification in Remote Sensing: A Review. In Proceedings of the 8th International Conference Reliability Infocom Technologies and Optimization (Trends and Future Directions), Noida, India, 4–5 June 2020; pp. 903–908. [Google Scholar]
- Wei, L.; Wang, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Xia, H.; Cao, L. Transparency Estimation of Narrow Rivers by UAV-Borne Hyperspectral Remote Sensing Imagery. IEEE Access 2020, 8, 168137–168153. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Silva, J. Studies of Internal Waves in the Strait of Georgia Based on Remote Sensing Images. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium 2020, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3549–3551. [Google Scholar]
- Jeong, S.W.; Lee, I.H.; Kim, Y.G.; Kang, K.S.; Shim, D.; Hurry, V. Spectral Unmixing of Hyperspectral Images Revealed Pine Wilt Disease Sensitive Endmembers. Physiol. Plant. 2025, 177, 70090. [Google Scholar] [CrossRef] [PubMed]
- SHimoni, M.; Haelterman, R.; Perneel, C. Hyperspectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–107. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, B.; Wang, G.; Ying, J.; Liu, J.; Chen, Q. Spectral Camouflage Characteristics and Recognition Ability of Targets Based on Visible/Near-Infrared Hyperspectral Images. Photonics 2022, 9, 957. [Google Scholar] [CrossRef]
- Seo, D.; Lee, D.; Park, S.; Oh, S. Hyperspectral Image-Based Identification of Maritime Objects Using Convolutional Neural Networks and Classifier Models. J. Mar. Sci. Eng. 2025, 13, 6. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Improving Multispectral Mapping by Spectral Modeling with Hyperspectral Signatures. J. Appl. Remote Sens. 2009, 3, 33504. [Google Scholar]
- Ju, S.; Zou, J.; Ma, R. Research Progress in Unmanned Aerial Vehicle-Borne Hyperspectral Imaging Payload. In Proceedings of the SPIE 12797, Second International Conference on Geographic Information and Remote Sensing Technology (GIRST 2023), Qingdao, China, 21–23 July 2023; p. 1279723. [Google Scholar]
- Shi, Z.; Chen, C.; Xiong, Z.; Liu, D.; Wu, F. HSCNN: Advanced CNN-Based Hyperspectral Recovery from RGB Images. In Proceedings of the IEEE/CVF Conference Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1052–10528. [Google Scholar]
- Jin, Q. Gaussian Mixture Model for Hyperspectral Unmixing with Low-Rank Representation. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium 2019, Yokohama, Japan, 28 July–2 August 2019; pp. 294–297. [Google Scholar]
- Smith, M.O.; Adams, J.B.; Sabol, D.E. Spectral Mixture Analysis—New Strategies for the Analysis of Multispectral Data. In Imaging Spectrometry—A Tool for Environmental Observations. Eurocourses: Remote Sensing; Springer: Dordrecht, The Netherlands, 1994; Volume 4. [Google Scholar] [CrossRef]
- Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Shi, C.; Wang, L. Incorporating Spatial Information in Spectral Unmixing: A Review. Remote Sens. Environ. 2014, 149, 70–87. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Shimabukuro, Y.; Pereira, G. Spectral Unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340. [Google Scholar] [CrossRef]
- Rasti, B.; Zouaoui, A.; Mairal, J.; Chanussot, J. Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–31. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X. An Overview on Linear Unmixing of Hyperspectral Data. Math. Probl. Eng. 2020, 2020, 3735403. [Google Scholar] [CrossRef]
- Yang, B.; Wang, B. Review of Nonlinear Unmixing for Hyperspectral Remote Sensing Imagery. J. Infrared Millim. Waves 2017, 36, 173–185. [Google Scholar]
- Feng, X.; Li, H.; Wang, R. Hyperspectral Unmixing Based on Nonnegative Matrix Factorization: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4414–4436. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, M.; Wang, X.; Richard, C.; Rahardja, S. Integration of Physics-Based and Data-Driven Models for Hyperspectral Image Unmixing: A Summary of Current Methods. IEEE Signal Process. Mag. 2023, 40, 61–74. [Google Scholar] [CrossRef]
- Zare, A.; Ho, K. Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing. IEEE Signal Process. Mag. 2014, 31, 95–104. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.; Tits, L.; Coppin, P. Endmember Variability in Spectral Mixture Analysis: A Review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Borsoi, R.; Imbiriba, T.; Bermudez, J.; Richard, C.; Chanussot, J. Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Ma, W.; Bioucas-Dias, J.; Chan, T.; Gillis, N.; GAder, P.; Plaza, A. A Signal Processing Perspective on Hyperspectral Unmixing: Insights from Remote Sensing. IEEE Signal Process. Mag. 2014, 31, 67–81. [Google Scholar] [CrossRef]
- Zhu, X. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imag. 2019, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Garima, J.; Ritu, R.; Harshita, M.; Arun, S. Integration of Hyperspectral Imaging and Autoencoders: Benefits, Applications, Hyperparameter Tuning and Challenges. Comput. Sci. Rev. 2023, 50, 100584. [Google Scholar]
- Behnood, R.; Alexandre, Z.; Julien, M.; Jocelyn, C. HySUPP: An Open-Source Hyperspectral Unmixing Python Package. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Bhatt, J.; Joshi, M. Deep Learning in Hyperspectral Unmixing: A Review. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2189–2192. [Google Scholar]
- Palsson, B.; Sveinsson, J.; Ulfarsson, M. Blind Hyperspectral Unmixing Using Autoencoders: A Critical Comparison. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1340–1372. [Google Scholar] [CrossRef]
- Hong, D. Interpretable Hyperspectral Artificial Intelligence: When Nonconvex Modeling Meets Hyperspectral Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 52–87. [Google Scholar] [CrossRef]
- Feng, X.; Li, H.; Li, J.; Du, Q.; Plaza, A.; Emery, W. Hyperspectral Unmixing Using Sparsity-Constrained Deep Nonnegative Matrix Factorization with Total Variation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6245–6257. [Google Scholar] [CrossRef]
- Heylen, R.; Gader, P. Nonlinear Spectral Unmixing with a Linear Mixture of Intimate Mixtures Model. IEEE Trans. Geosci. Remote Sens. Lett. 2013, 11, 1195–1199. [Google Scholar] [CrossRef]
- Luo, W.; Gao, L.; Zhang, B. A New Algorithm for Bilinear Spectral Unmixing of Hyperspectral Images Using Particle Swarm Optimization. IEEE J. Sel. Top. Signal Process. 2016, 15, 5776–5790. [Google Scholar] [CrossRef]
- Chen, J.; Richard, C.; Honeine, P. Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/ Nonlinear-Fluctuation Model. IEEE Trans. Signal Process. 2012, 61, 480–492. [Google Scholar] [CrossRef]
- Févotte, C.; Dobigeon, N. Nonlinear Hyperspectral Unmixing with Robust Nonnegative Matrix Factorization. IEEE Trans. Image Process. 2015, 24, 4810–4819. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Gao, L.; Li, J.; Plaza, A. Normal Endmember Spectral Unmixing Method for Hyperspectral Imagery. IEEE J. Sel. Top. Signal Process. 2014, 8, 2598–2606. [Google Scholar] [CrossRef]
- Luo, W.; Gao, L.; Zhang, R.; Marinoni, A.; Zhang, B. Bilinear Normal Mixing Model for Spectral Mixing. IET Image Process. 2019, 13, 344–354. [Google Scholar] [CrossRef]
- Chang, C.I.; Du, Q. Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 608–619. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer Verlag: New York, NY, USA, 1986; pp. 111–137. [Google Scholar]
- Machidon, A.; Frate, F.; Picchiani, M.; Machidon, O.; Orgrutan, P. Geometrical Approximated Principle Component Analysis for Hyperspectral Image Analysis. Remote Sens. 2020, 12, 1698. [Google Scholar] [CrossRef]
- Green, A.; Berman, M.; Switzer, P.; Craig, M. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Heylen, R.; Parente, M.; Scheunders, P. Estimation of Number of the Endmembers in a Hyperspectral Image via the Hubness Phenomenon. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2191–2200. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Rissanen, J. Modeling by Shortest Data Description. Automatica 1978, 14, 465–471. [Google Scholar] [CrossRef]
- Jia, J.; Chen, J.; Zheng, X.; Wang, Y.; Guo, S.; Sun, H.; Chen, Y. Tradeoffs in the Spatial and Spectral Resolution of Airborne Hyperspectral Imaging Systems: A Crop Identification Case Study. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Bajorski, P. Second Moment Linear Dimensionality as an Alternative to Virtual Dimensionality. IEEE Trans. Geosci. Remote Sens. 2011, 49, 672–678. [Google Scholar] [CrossRef]
- Halimi, A.; Honeine, P.; Kharouf, M.; Richard, C.; Tourneret, J.Y. Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3811–3821. [Google Scholar] [CrossRef]
- Luo, B.; Chanussot, J.; Douté, S.; Zhang, L. Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 24–28. [Google Scholar]
- Prades, J.; Safont, G.; Salazar, A.; Vergara, L. Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering. Remote Sens. 2020, 12, 3585. [Google Scholar] [CrossRef]
- Prades, J.; Addisson, S.; Safont, G.; Vergara, L. Determining the Number of Endmembers of Hyperspectral Images Using Clustering. In Proceedings of the CSCI, Las Vegas, NV, USA, 16–18 December 2020; pp. 1664–1668. [Google Scholar]
- Eches, O.; Dobigeon, N.; Tourneret, J. Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm. IEEE J. Sel. Top. Signal Process. 2010, 4, 582–591. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Nascimento, J. Hyperspectral Subspace Identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef]
- Rasti, B.; Ulfarsson, M.; Sveinsson, J. Hyperspectral Subspace Identification Using SURE. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2481–2485. [Google Scholar] [CrossRef]
- Ambikapathi, A.; Chan, T.; Chi, C.; Keizer, K. Hyperspectral Data Geometry Based Estimation of Number of Endmembers Using p-Norm-Based Pure Pixel Identification Algorithm. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2753–2769. [Google Scholar] [CrossRef]
- Andreou, C.; Karathanassi, V. Estimation of the Number of Endmembers Using Robust Outlier Detection Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 247–256. [Google Scholar] [CrossRef]
- Tao, X.; Paoletti, M.; Plaza, A. Endmember Estimation with Maximum Distance Analysis. Remote Sens. 2021, 13, 713. [Google Scholar] [CrossRef]
- Tao, X.; Cui, T.; Plaza, A.; Ren, P. Simultaneously Counting and Extracting Endmembers in a Hyperspectral Image Based on Divergent Subsets. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8952–8966. [Google Scholar] [CrossRef]
- Song, A.; Chang, A.; Choi, J.; Choi, S.; Kin, Y. Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements. Sensors 2015, 15, 2593–2613. [Google Scholar] [CrossRef] [PubMed]
- Shahid, K.; Schizas, I. Spatial-Aware Hyperspectral Nonlinear Unmixing Autoencoder with Endmember Number Estimation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 15, 20–41. [Google Scholar] [CrossRef]
- Craig, M. Minimum-Volume Transforms for Remotely Sensed Data. IEEE Trans. Geosci. Remote Sens. 1994, 2, 542–552. [Google Scholar] [CrossRef]
- Winter, M. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 18–23 July 1999; p. 3753. [Google Scholar]
- Neville, R.; Staenz, K.; Szeredi, T.; Lefebvre, J.; Hauff, P. Automatic Endmember Extraction from Hyperspectral Data for Mineral Exploration. In Proceedings of the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, Ottawa, ON, Canada, 21–24 June 1999. [Google Scholar] [CrossRef]
- Fuhrmann, D. Simplex Shrink-Wrap Algorithm. In Proceedings of the SPIE 3718, Automatic Target Recognition IX, Orlando, FL, USA, 7–9 April 1999; SPIE: Pune, MH, India, 1999. [Google Scholar]
- Gruninger, J.; Ratkowski, A.; Hoke, M. The Sequential Maximum Angle Convex Cone (SMACC) Endmember Model. In Proceedings of the SPIE Volume 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and ultraspectral Imagery X, Orlando, FL, USA, 12–16 April 2004; pp. 1–14. [Google Scholar]
- Berman, M.; Kiiveri, H.; Lagerstrom, R.; Ernst, A.; Dunne, R.; Huntington, J. ICE: A Statistical Approach to Identifying Endmembers in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2008, 42, 2085–2095. [Google Scholar] [CrossRef]
- Nascimento, J.; Dias, M. Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Miao, L.; Qi, H. Endmember Extraction from Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45, 765–777. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J. Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. 250–253. [Google Scholar]
- Bioucas-Dias, J. A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing. In Proceedings of the 1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; IEEE: New York, NY, USA, 2009; pp. 1–4. [Google Scholar]
- Shah, D.; Zaveri, I. Dispersion Index Based Endmember Extraction for Hyperspectral Unmixing. IETE J. Res. 2023, 69, 2837–2845. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Xue, T. Quadratic Clustering-Based Simplex Volume Maximization for Hyperspectral Endmember Extraction. Appl. Sci. 2022, 12, 7132. [Google Scholar] [CrossRef]
- Shah, D.; Zaveri, T. Convex Geometry and K-Medoids Based Noise-Robust Endmember Extraction Algorithm. J. Appl. Remote Sens. 2020, 14, 034521. [Google Scholar] [CrossRef]
- Bayliss, J.; Gualtieri, J.; Cromp, R. Analyzing Hyperspectral Data with Independent Component Analysis. In Proceedings of the 26th AIPR Workshop: Exploiting New Image Sources and Sensors, Washington, DC, USA, 15–17 October 1997; SPIE: Bellingham, WA, USA, 1998; pp. 133–143. [Google Scholar]
- Zhao, M.; Gao, T.; Chen, J. Hyperspectral Unmixing via Nonnegative Matrix Factorization with Handcrafted and Learned Priors. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Qian, Y.; Xiong, F.; Zeng, S.; Zhou, J.; Tang, Y. Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1776–1792. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Ng, M.K.; Wang, C. Nonnegative Matrix Functional Factorization for Hyperspectral Unmixing with Non-Uniform Spectral Sampling. IEEE Trans. Geosci. Remote Sens. 2023, 62, 1–13. [Google Scholar]
- Nascimento, J.; Bioucas-Dias, J. Hyperspectral Unmixing Algorithm via Dependent Component Analysis. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE: New York, NY, USA, 2007; pp. 4033–4036. [Google Scholar]
- Dobigeon, N.; Moussaoui, S.; Tourneret, J.; Carteret, C. Bayesian Separation of Spectral Sources Under Non-Negativity and Fully Additivity Constraints. Signal Process. 2009, 89, 2657–2669. [Google Scholar] [CrossRef]
- Li, J.; Plaza, A.; Liu, L. Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6076–6090. [Google Scholar] [CrossRef]
- Boardman, J. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts. In Proceedings of the 4th Annual JPL Airborne Geoscience Workshop, Washington, DC, USA, 25–29 October 1993; Colorado University: Boulder, CO, USA, 1993; pp. 11–14. [Google Scholar]
- Boardman, J.; Kruse, F.; Green, R. Mapping Target Signatures via Partial Unmixing of AVIRIS Data. In Proceedings of the 5th JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995. [Google Scholar]
- Harsanyi, J.; Chang, C. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Araújo, M.; Saldanha, T.; Galvão, R.; Yoneyama, T.; Chame, H.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, L.; Li, P. Unmixing Hyperspectral Imagery Based on Support Vector Nonlinear Approximating Regression. J. Remote Sens. 2006, 10, 312–318. [Google Scholar]
- Plaza, A.; Martínez, P.; Pérez, R.; Plaza, J. Spatial/ Spectral Endmember Extraction by Multidimensional Morphological Operations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2025–2041. [Google Scholar] [CrossRef]
- Rudin, L.; Osher, S.; Fatemi, E. Nonlinear Total Variation Based Noise Removal Algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Zhang, J.; Sanchez, A.; Harris, J.; Feng, J. Integration of Spatial Spectral Information for the Improved Extraction of Endmembers. Remote Sens. Environ. 2007, 110, 287–303. [Google Scholar] [CrossRef]
- Zortea, M.; Plaza, A. Spatial Preprocessing for Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2679–2693. [Google Scholar] [CrossRef]
- Song, M.; Li, Y.; Xu, D. Spatial Potential Energy Weighted Maximum Simplex Algorithm for Hyperspectral Endmember Extraction. Remote Sens. 2022, 14, 1192. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, L.; Wu, Y.; Sun, X.; Zhang, B. A Quantitative and Comparative Analysis of Different Preprocessing Implementations of DPSO: A Robust Endmember Extraction Algorithm. Soft Comput. 2014, 20, 4669–4683. [Google Scholar] [CrossRef]
- Gao, L.; Gao, J.; Li, J.; Plaza, A.; Zhuang, L.; Sun, X.; Zhang, B. Multiple Algorithm Integration Based on Ant Colony Optimization for Endmember Extraction from Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2569–2582. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, Y.; Wang, T.; Cui, W.; Li, X. A Method Based on the Adaptive Cuckoo Search Algorithm for Endmember Extraction from Hyperspectral Remote Sensing Images. Remote Sens. Lett. 2016, 7, 289–297. [Google Scholar] [CrossRef]
- Somers, B.; Zortea, M.; Plaza, A.; Asner, G. Automated Extraction of Image-Based Endmember Bundles for Improved Spectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 396–408. [Google Scholar] [CrossRef]
- Ye, C.; Liu, S.; Xu, M.; Du, B.; Wan, J.; Sheng, H. An Endmember Bundle Extraction Method Based on Multiscale Sampling to Address Spectral Variability for Hyperspectral Unmixing. Remote Sens. 2021, 13, 3941. [Google Scholar] [CrossRef]
- Hashemi-Nazari, Y.; Tajaddini, A.; Saberi-Movahed, F.; Alonso-Fernandez, F.; Tiwari, P. Robust Oblique Projection and Weighted NMF for Hyperspectral Unmixing. Pattern Recogn. 2025, 170, 112029. [Google Scholar] [CrossRef]
- Halimi, A.; Altmann, Y.; Dobigeon, N.; Tourneret, J. Unmixing Hyperspectral Images Using the Generalized Bilinear Model. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1886–1889. [Google Scholar]
- Yokoya, N.; Chanussot, J.; Iwasaki, A. Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1430–1437. [Google Scholar] [CrossRef]
- Li, H.C.; Feng, X.R.; Wang, R.; Gao, L.; Du, Q. Superpixel-Based Low-Rank Tensor Factorization for Blind Nonlinear Hyperspectral Unmixing. IEEE Sens. J. 2024, 24, 13055–13072. [Google Scholar] [CrossRef]
- Tao, X.; Paoletti, M.; Han, L.; Haut, J.; Ren, P.; Plaza, J.; Plaza, A. Fast Orthogonal Projection for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5523313. [Google Scholar] [CrossRef]
- Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Sparse Unmixing of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef]
- Zare, A.; Gader, P. Sparsity Promoting Iterated Constrained Endmember Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 446–450. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Figueiredo, M. Alternating Direction Algorithms for Constrained Sparse Regression: Application to Hyperspectral Unmixing. In Proceedings of the 2nd WHISPERS, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Qian, Y.; Jia, S.; Zhou, J.; Robles-Kelly, K. Hyperspectral Unmixing via L~1/2~ Sparsity Constrained Nonnegative Matrix Factorization. IEEE Tans. Geosci. Remote Sens. 2011, 49, 4283–4297. [Google Scholar] [CrossRef]
- Zheng, C.; Li, H.; Wang, Q.; Chen, C. Reweighted Sparse Regression for Hyperspectral Unmixing. IEEE Tans. Geosci. Remote Sens. 2016, 52, 479–488. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Liu, K.; Deng, C.; Liu, L.; Plaza, A. Hyperspectral Unmixing Based on Local Collaborative Sparse Regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 631–635. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Y. Elastic Reweighted Sparsity Regularized Sparse Unmixing for Hyperspectral Image Analysis. Digit. Signal Process. 2024, 155, 104723. [Google Scholar] [CrossRef]
- Xu, X.; Pan, B.; Chen, Z.; Shi, Z.; Li, T. Simultaneously Multiobjective Sparse Unmixing and Library Pruning for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3383–3395. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, X.; Pan, B.; Li, T.; Shi, Z. A Multiobjective Group Sparse Hyperspectral Unmixing Method with High Correlation Library. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7114–7127. [Google Scholar] [CrossRef]
- Li, J.; Gong, M.; Wei, J.; Zhang, Y.; Zhao, Y.; Wang, S.; Jiang, X. Evolutionary Multitasking Cooperative Transfer for Multiobjective Hyperspectral Sparse Unmixing. Knowl. Based Syst. 2024, 285, 111306. [Google Scholar] [CrossRef]
- Deng, K.; Qian, Y.; Nie, J.; Zhou, J. Diffusion Model Based Hyperspectral Unmixing Using Spectral Prior Distribution. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–6. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image Denoising via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef]
- Qu, Q.; Nasrabadi, N.; Tran, T. Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4404–4423. [Google Scholar]
- Zhang, H.; Yang, B. Geometrical Projection Improved Multi-Objective Particle Swarm Optimization for Unsupervised Nonlinear Hyperspectral Unmixing. Int. J. Remote Sens. 2024, 45, 1850–1883. [Google Scholar] [CrossRef]
- Song, X.; Wu, L. A Novel Hyperspectral Endmember Extraction Algorithm Based on Online Robust Dictionary Learning. Remote Sens. 2019, 11, 1792. [Google Scholar] [CrossRef]
- Feng, R.; Zhong, Y.; Zhang, L. An Improved Nonlocal Sparse Unmixing Algorithm for Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 915–919. [Google Scholar] [CrossRef]
- Heinz, D.; Chang, C.; Althouse, M. Fully Constrained Least-Squares Based Linear Unmixing Hyperpsectral Image Classification. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; Volume 2, pp. 1401–1403. [Google Scholar]
- Heinz, D.C. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, A. Noise Effect on Linear Spectral Unmixing. Ann. GIS 1999, 5, 52–57. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4138–4152. [Google Scholar] [CrossRef]
- Routh, D.; Seegmiller, L.; Bettigole, C.; Kuhn, C.; Oliver, C.D.; Glick, H.B. Improving the Reliability of Mixture Tuned Matched Filtering Remote Sensing Classification Results Using Supervised Learning Algorithms and Cross-Validation. Remote Sens. 2018, 10, 1675. [Google Scholar] [CrossRef]
- Li, J. Wavelet-Based Feature Extraction for Improved Endmember Abundance Estimation in Linear Unmixing of Hyperspectral Signals. IEEE Trans. Geosci. Remote Sens. 2002, 42, 644–649. [Google Scholar] [CrossRef]
- Farzam, M.; Beheshti, S.; Raahemifar, K. Calculation of Abundance Factors in Hyperspectral Imaging Using Genetic Algorithm. In Proceedings of the Electical and Computer Enginerring, Niagara Falls, ON, Canada, 4–7 May 2008. [Google Scholar]
- Broadwater, J.; Chellappa, R.; Banerjee, A.; Burlina, P. Kernel Fully Constrained Least Squares Abundance Estimates. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Chouzenoux, E.; Legendre, M.; Moussaoui, S.; Idier, J. Fast Constrained Least Squares Spectral Unmixing Using Primal-Dual Interior-Point Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 59–69. [Google Scholar] [CrossRef]
- Chen, J.; Richard, C.; Honeine, P. Nonlinear Estimation of Material Abundances in Hyperspectral Images with L1-Norm Spatial Regularization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2654–2665. [Google Scholar] [CrossRef]
- Kizel, F.; Shoshany, M.; Netanyahu, N.; Even-Tzur, G.; Benediktsson, J. A Stepwise Analytical Projected Gradient Descent Search for Hyperspectral Unmixing and Its Code Vectorization. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4925–4943. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Huang, J.; Mei, X.; Liu, C.; Ma, Y. GBM Based Unmixing of Hyperspectral Data Using Bound Projected Optimal Gradient Method. IEEE Geosci. Remote Sens. Lett. 2016, 13, 952–956. [Google Scholar] [CrossRef]
- Wu, L.; Huang, J.; Zhu, Z.Y. Tucker Tensor Decomposition with Rank Estimation for Sparse Hyperspectral Unmixing. Int. J. Remote Sens. 2024, 45, 3992–4022. [Google Scholar] [CrossRef]
- Guifoyle, K.; Althouse, M.; Chang, C. A Quantitative and Comparative Analysis of Linear and Nonlinear Spectral Mixture Models Using Radial Basis Function Neural Networks. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2314–2318. [Google Scholar] [CrossRef]
- Zhou, C.; Rodrigues, M. ADMM-Based Hyperspectral Unmixing Networks for Abundance and Endmember Estimation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Elman, J. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Chan, T.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Yi, M. PCANet: A Simple Deep Learning Baseline for Image Classification? IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef]
- Smola, A.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 192–222. [Google Scholar] [CrossRef]
- Palla, P.; Shetty, A.; Narasimhadhan, A. Subtractive Clustering and Phase Correlation Similarity Measure for Endmember Extraction. Infrared Phys. Technol. 2020, 110, 103452. [Google Scholar] [CrossRef]
- Wu, K.; Feng, X.; Zhang, Y. A Novel Endmember Extraction Method Using Sparse Component Analysis for Hyperspectral Remote Sensing Imagery. IEEE Access 2018, 6, 75206–75215. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Li, X. Twin Support Vector Machine-Based Hyperspectral Unmixing and Its Uncertainty Analysis. J. Remote Sens. 2020, 14, 046504. [Google Scholar] [CrossRef]
- Yang, K.; Liu, E.; Zhang, W.; Wang, G.; Xia, T. A Novel Algorithm on Endmember Extraction Based on Surf and Considering the Dimension of Hyperspectral Image. Sci. Technol. Eng. 2016, 16, 66–71. [Google Scholar]
- Shen, X.; Bao, W. Hyperspectral Endmember Extraction Using Spatially Weighted Simplex Strategy. Remote Sens. 2019, 11, 2147. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Z.; Wang, D. Group Endmember Extraction Algorithm Based on Gram-Schmidt Orthogonalization. J. Appl. Remote Sens. 2019, 13, 026504. [Google Scholar] [CrossRef]
- Su, Y.; Sun, X. Improved Discrete Swarm Intelligence Algorithms for Endmember Extraction from Hyperspectral Remote Sensing Images. J. Appl. Remote Sens. 2016, 10, 045018. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, X.; Hu, X. The Spatial-Spectral-Environment Extraction Endmember Algorithm and Application in the MODIS Fractional Snow Cover Retrieval. Remote Sens. 2020, 12, 3693. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X. Endmember Bundle Extraction Based on Multiobjective Optimization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8630–8645. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Gong, M. Multi-Fidelity Evolutionary Multitasking Optimization for Hyperspectral Endmember Extraction. Appl. Soft Comput. 2021, 111, 107713. [Google Scholar] [CrossRef]
- Liu, R.; Wang, P.; Qu, B. Endmember Bundle Extraction Based on Improved Multiobjective Particle Swarm Optimization. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Liu, R.; Du, B.; Zhang, L. Multiobjective Optimized Endmember Extraction for Hyperspectral Images. Remote Sens. 2017, 9, 558. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, L.; Song, D. A Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization Algorithm for Hyperspectral Endmember Extraction. Remote Sens. 2017, 9, 197. [Google Scholar] [CrossRef]
- Kale, K.V.; Solankar, M.M.; Nalawade, D.B. Hyperspectral Endmember Extraction Techniques, Processing and Analysis of Hyperspectral Data; IntechOpen: London, UK, 2020; pp. 1–136. [Google Scholar] [CrossRef]
- Yang, L.; Peng, J.; Su, H.; Xu, L.; Wang, Y.; Yu, B. Combined Nonlocal Spatial Information and Spatial Group Sparsity in NMF for Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1767–1771. [Google Scholar] [CrossRef]
- Rasti, B.; Zouaoui, A.; Mairal, J. Sunaa: Sparse Unmixing Using Archetypal Analysis. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Deshpande, V.; Bhatt, J. A Practical Approach for Hyperspectral Unmixing Using Deep Learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar]
- Berahmand, K.; Daneshfar, F.; Salehi, E.S.; Li, Y.; Xu, Y. Autoencoders and Their Applications in Machine Learning: A Survey. Artif. Intell. Rev. 2024, 57, 28. [Google Scholar] [CrossRef]
- Lemme, A.; Reinhart, R.F.; Steil, J.J. Online Learning and Generalization of Parts-Based Image Representations by Non-Negative Sparse Autoencoders. Neural Netw. 2012, 33, 194–203. [Google Scholar] [CrossRef]
- Su, Y.; Marinoni, A.; Li, J.; Plaza, J.; Gamba, P. Stacked Nonnegative Sparse Autoencoders for Robust Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1427–1431. [Google Scholar] [CrossRef]
- Palsson, B.; Sigurdsson, J.; Sveinsson, J.R.; Ulfarsson, M.O. Hyperspectral Unmixing Using a Neural Network Autoencoder. IEEE Access 2018, 6, 25646–25656. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Altmann, Y.; Chen, J. Deep Generative Model for Spatial-Spectral Unmixing with Multiple Endmember Priors. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Guo, R.; Wang, W.; Qi, H. Hyperspectral Image Unmixing Using Autoencoder Cascade. In Proceedings of the 7th WHISPERS, Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Qu, Y.; Qi, H. UDAS: An Untied Denoising Autoencoder with Sparsity for Spectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1698–1712. [Google Scholar] [CrossRef]
- Gao, L.; Han, Z.; Hong, D.; Zhang, B.; Chanussot, J. CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, J.; Long, H. Cascaded Hybrid Convolutional Autoencoder Network for Spectral-Spatial Nonlinear Hyperspectral Unmixing. Int. J. Remote Sens. 2024, 45, 9267–9286. [Google Scholar] [CrossRef]
- Ozkan, S.; Kaya, B.; Akar, G. Endnet: Sparse Autoencoder Network for Endmember Extraction and Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2018, 57, 482–496. [Google Scholar] [CrossRef]
- Su, Y.; Mariononi, A.; Li, J.; Plaza, A.; Gamba, P. Nonnegative Sparse Autoencoder for Robust Endmember Extraction from Remotely Sensed Hyperspectral Images. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 205–208. [Google Scholar]
- Lindenbaum, O.; Aizenbud, Y.; Kluger, Y. Probabilistic Robust Autoencoders for Outlier Detection. arXiv 2021, arXiv:2110.00494. [Google Scholar]
- Zhao, M.; Chen, J.; Dobigeon, N. AE-RED: A Hyperspectral Unmixing Framework Powered by Deep Autoencoder and Regularization by Denoising. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5512115. [Google Scholar] [CrossRef]
- Li, P.; Pei, Y.; Li, J. A Comprehensive Survey on Design and Application of Autoencoder in Deep Learning. Appl. Soft Comput. 2023, 138, 110176. [Google Scholar] [CrossRef]
- Cao, C.; Song, W.; Xiang, H. A Two-Stream Stacked Autoencoder with Inter-Class Separability for Bilinear Hyperspectral Unmixing. IEEE Trans. Comput. Imag. 2024, 10, 357–371. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J. Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6518–6531. [Google Scholar] [CrossRef]
- Qi, L.; Gao, F.; Dong, J. SSCU-Net: Spatial-Spectral Collaborative Unmixing Network for Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Qi, L.; Chen, Z.; Gao, F.; Dong, J.; Gao, X.; Du, Q. Multiview Spatial-Spectral Two-Stream Network for Hyperspectral Image Unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Qi, L.; Qin, X.; Gao, F.; Dong, J.; Gao, X. SAWU-Net: Spatial Attention Weighted Unmixing Network for Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Wang, B.; Yao, H.; Song, D.; Zhang, J.; Gao, H. SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1781–1794. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Jin, Q.; Peng, C.; Liu, Q. A Multi-Domain Dual-Stream Network for Hyperspectral Unmixing. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104247. [Google Scholar] [CrossRef]
- Li, H.; Borsoi, R.; Imbiriba, T.; Closas, P.; Bermudez, J.; Erdogmus, D. Model-Based Deep Autoencoder Networks for Nonlinear Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Shahid, K.; Schizas, I. Unsupervised Hyperspectral Unmixing via Nonlinear Autoencoders. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Zhao, M.; Yan, L.; Chen, J. LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing. IEEE J. Sel. Top. Signal Process. 2021, 15, 295–309. [Google Scholar] [CrossRef]
- Su, Y.; Xu, X.; Li, J.; Qi, H.; Gamba, P.; Plaza, A. Deep Autoencoders with Multitask Learning for Bilinear Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8615–8629. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Chen, J.; Rahardja, S. Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1467–1471. [Google Scholar] [CrossRef]
- Xu, M.; Xu, J.; Liu, S.; Sheng, H.; Yang, Z. Multi-Scale Convolutional Mask Network for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3687–3700. [Google Scholar] [CrossRef]
- Liu, B.; Kong, W.; Wang, Y. Deep Convolutional Asymmetric Autoencoder-Based Spatial-Spectral Clustering Network for Hyperspectral Image. Wirel. Commun. Mob. Comput. 2022, 2022, 2027981. [Google Scholar] [CrossRef]
- Khajehrayeni, F.; Ghassemian, H. Hyperspectral Unmixing Using Deep Convolutional Autoencoders in a Supervised Scenario. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 567–576. [Google Scholar] [CrossRef]
- Fang, T.; Zhu, F.; Chen, J. Hyperspectral Unmixing Based on Multilinear Mixing Model Using Convolutional Autoencoders. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Xie, H.; Yue, P.; Zhang, W.; Jiao, Q.; Xu, L.; Tan, X. A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing. Remote Sens. 2024, 16, 3149. [Google Scholar] [CrossRef]
- Ozkan, S.; Akar, G. Deep Spectral Convolution Network for Hyperspectral Unmixing. In Proceedings of the 25th IEEE International Conference Image Processing, Athens, Greece, 7–10 October 2018; pp. 3313–3317. [Google Scholar]
- Su, Y.; Zhu, Z.; Gao, L.; Plaza, A.; Li, P.; Sun, X.; Xu, X. DAAN: A Deep Autoencoder-Based Augmented Network for Blind Multilinear Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Jin, D.; Yang, B. Graph Attention Convolutional Autoencoder-Based Unsupervised Nonlinear Unmixing for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7896–7906. [Google Scholar] [CrossRef]
- Hua, Z.; Li, X.; Qiu, Q.; Zhao, L. Autoencoder Network for Hyperspectral Unmixing with Adaptive Abundance Smoothing. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1640–1644. [Google Scholar] [CrossRef]
- Mhaskar, H.; Liao, Q.; Poggio, T. When and Why Are Deep Networks Better than Shallow Ones? In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 2343–2349. [Google Scholar] [CrossRef]
- Su, L.; Liu, J.; Yuan, Y. A Multi-Attention Autoencoder for Hyperspectral Unmixing Based on the Extended Linear Mixing Model. Remote Sens. 2023, 15, 2898. [Google Scholar] [CrossRef]
- Hubel, D.; Wiesel, T. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 1983, 36, 193–202. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intel. Neurosc. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Gu, J. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Roy, S. Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 968–999. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Zhang, J. Hyperspectral Unmixing via Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1755–1759. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Gao, H.; Yang, Y.; Li, C.; Zhou, H.; Qu, X. Joint Alternate Small Convolution and Feature Reuse for Hyperspectral Image Classification. ISPRS Int. J. Geo- Inf. 2018, 7, 349. [Google Scholar] [CrossRef]
- Qi, L.; Li, J.; Wang, Y.; Lei, M.; Gao, X. Deep Spectral Convolution Network for Hyperspectral Image Unmixing with Spectral Library. Signal Process. 2020, 176, 107672. [Google Scholar] [CrossRef]
- Wan, L.; Chen, T.; Plaza, A. Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11669–11682. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.; Sveinsson, J. Convolutional Autoencoder for Spectral-Spatial Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 59, 535–549. [Google Scholar] [CrossRef]
- Liu, L.; Awwad, E.M.; Ali, Y.A.; Al-Razgan, M.; Maarouf, A.; Abualigah, L.; Hoshyar, A.N. Multi-Dataset Hyper-CNN for Hyperspectral Image Segmentation of Remote Sensing Images. Processes 2023, 11, 435. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Fan, J.; Meng, H. A 3-D-CNN and Semi-Supervised Based Network for Hyperspectral Unmixing. Int. J. Remote Sens. 2022, 45, 168–191. [Google Scholar]
- Tao, X.; Paoletti, M.; Han, L. A New Deep Convolutional Network for Effective Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6999–7012. [Google Scholar] [CrossRef]
- Tulczyjew, L.; Kawulok, M.; Longépé, N. A Multibranch Convolutional Neural Network for Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Lin, C.; Ma, W.; Li, W. Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5530–5546. [Google Scholar]
- Rasti, B.; Koirala, B.; Scheunders, P.; Chanussot, J. Misicnet: Minimum Simplex Convolutional Network for Deep Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Xu, M.; Du, B.; Fang, Y. Endmember Extraction from Highly Mixed Data Using Linear Mixture Model Constrained Particle Swarm Optimization. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5502–5511. [Google Scholar] [CrossRef]
- Zhuang, L.; Lin, C.; Bioucas-Dias, J. Regularization Parameter Selection in Minimum Volume Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9858–9877. [Google Scholar] [CrossRef]
- Behnood, R.; Bikram, K. SUnCNN: Sparse Unmixing Using Unsupervised Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar]
- Kong, F.; Chen, M.; Li, Y.; Li, D.; Zhang, Y. Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S.K.; Koirala, B.; Rasti, B.; Scheunders, P. Deep Hyperspectral Unmixing Using Transformer Network. arXiv 2022. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, S.; Chen, J.; Dobigeon, N. A 3D-CNN Framework for Hyperspectral Unmixing with Spectral Variability. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar]
- Tang, M.; Qu, Y.; Qi, H. Hyperspectral Nonlinear Unmixing via Generative Adversarial Network. In Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2404–2407. [Google Scholar]
- Roy, S.; Haut, J.; Paoletti, M.; Dubey, S.; Plaza, A. Generative Adversarial Minority Oversampling for Spectral-Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Jin, Q.; Ma, Y.; Fan, F.; Huang, J.; Mei, X.; Ma, J. Adversarial Autoencoder Network for Hyperspectral Unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 4555–4569. [Google Scholar] [CrossRef]
- Zhao, M.; Yan, L.; Chen, J. Hyperspectral Image Shadow Compensation via Cycle-Consistent Adversarial Networks. Neurocomputing 2021, 450, 61–69. [Google Scholar] [CrossRef]
- Sun, B.; Su, Y.; Sun, H.; Bai, J.; Li, P.; Liu, F.; Liu, D. Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Ozkan, S.; Akar, G. Improved Deep Spectral Convolution Network for Hyperspectral Unmixing with Multinomial Mixture Kernel and Endmember Uncertainty. arXiv 2019, arXiv:1808.01104. [Google Scholar] [CrossRef]
- Borsoi, R.; Imbiriba, T.; Bermudez, J. Deep Generative Endmember Modeling: An Application to Unsupervised Spectral Unmixing. IEEE Trans. Comp. Imag. 2019, 6, 374–384. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.; Sveinsson, J. Synthetic Hyperspectral Images with Controllable Spectral Variability and Ground Truth. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.; Sveinsson, J. Synthetic Hyperspectral Images with Controllable Spectral Variability Using a Generative Adversarial Network. Remote Sens. 2023, 15, 3919. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, M.; Zhang, L.; Altmann, Y.; Chen, J. Probabilistic Generative Model for Hyperspectral Unmixing Accounting for Endmember Variability. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Hu, S.; Li, H. Hyperspectral Unmixing with Multi-Scale Convolution Attention Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 2531–2542. [Google Scholar] [CrossRef]
- Qi, L.; Yue, M.; Gao, F.; Cao, B.; Dong, J.; Gao, X. Deep Attention-Guided Spatial-Spectral Network for Hyperspectral Image Unmixing. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, J.; Tao, S.; Lu, J.; Qian, Y. SNMF-Net: Learning a Deep Alternating Neural Network for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31th ICNIPS, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Guo, J.; Han, K.; Wu, H.; Xu, C.; Tang, Y.; Xu, C.; Wang, Y. Cmt: Convolutional Neural Networks Meet Vision Transformers. arXiv 2021, arXiv:2107.06263. [Google Scholar]
- Bhakthan, S.M.; Loganathan, A. A Hyperspectral Unmixing Model Using Convolutional Vision Transformer. Earth Sci. Inform. 2024, 17, 2255–2273. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, X.; Li, T.; Pan, B.; Shi, Z. UnDAT: Double-Aware Transformer for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Wang, P.; Liu, R.; Zhang, L. MAT-Net: Multiscale Aggregation Transformer Network for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Chen, C.; Fan, Q.; Panda, R. Crossvit: Cross-Attention Multiscale Vision Transformer for Image Classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 357–366. [Google Scholar]
- Yang, Z.; Xu, M.; Wan, J. UST-Net: A U-Shaped Transformer Network Using Shifted Windows for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Su, Y.; Gao, L.; Plaza, A.; Sun, X.; Jiang, M.; Yang, G. SRViT: Self-Supervised Relation-Aware Vision Transformer for Hyperspectral Unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2025, 1–14. [Google Scholar] [CrossRef]
- Yao, J.; Hong, D.; Chanussot, J.; Meng, D.; Zhu, X.; Xu, Z. Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 208–224. [Google Scholar]
- Xu, C.; Ye, F.; Kong, F.; Li, Y.; Lv, Z. MSCC-ViT:A Multiscale Visual-Transformer Network Using Convolution Crossing Attention for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18070–18082. [Google Scholar] [CrossRef]
- Roy, S.; Deria, A.; Shah, C.; Haut, J.; Du, Q.; Plaza, A. Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5503615. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Zhang, L.; Yang, L.; Bian, L.; Luo, Z.; Wang, J. TCCU-Net: Transformer and CNN Collaborative Unmixing Network for Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8073–8089. [Google Scholar] [CrossRef]
- Zeng, J.; Ritz, C.; Zhao, J.; Lan, J. Attention-Based Residual Network with Scattering Transform Features for Hyperspectral Unmixing with Limited Training Samples. Remote Sens. 2020, 12, 400. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S.K.; Koirala, B.; Rasti, B.; Scheunders, P. Hyperspectral Unmixing Using Transformer Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Kong, F.; Zheng, Y.; Li, D.; Li, Y.; Chen, M. Window Transformer Convolutional Autoencoder for Hyperspectral Sparse Unmixing. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Ge, Y.; Han, L.; Paoletti, M.E.; Haut, J.M.; Qu, G. Transformer-Enhanced CNN Based on Intensive Feature for Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Borsoi, R.; Imbiriba, T.; Closas, P. Dynamical Hyperspectral Unmixing with Variational Recurrent Neural Networks. IEEE Trans. Image Process. 2023, 32, 2279–2294. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, I.; Khan, R.U.; Khan, S.; Khan, K.; Pau, G. Conventional to Deep Ensemble Methods for Hyperspectral Image Classification: A Comprehensive Survey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3878–3916. [Google Scholar] [CrossRef]
- Remote Sensing Laboratory, University of Tehran. Available online: https://rslab.ut.ac.ir/data (accessed on 7 August 2025).
- Zapiola, A.G.; Boselli, A.; Menafoglio, A.; Vantini, S. Hyperspectral Unmixing Algorithms for Remote Compositional Surface Mapping: A Review of the State of the Art. arXiv 2025, arXiv:2507.14260. [Google Scholar] [CrossRef]
- Jia, J.; Zheng, X.; Wang, Y.; Chen, Y.; Karjalainen, M.; Dong, S.; Hyyppä, J. The Effect of Artificial Intelligence Evolving on Hyperspectral Imagery with Different Signal-to-Noise Ratio, Spectral and Spatial Resolutions. Remote Sens. Environ. 2024, 311, 114291. [Google Scholar] [CrossRef]
- Treat, C.C.; Marushchak, M.E.; Voigt, C.; Zhang, Y.; Tan, Z.; Zhuang, Q.; Virtanen, T.A.; Räsänen, A.; Biasi, C.; Hugelius, G.; et al. Tundra Landscape Heterogeneity, Not Interannual Variability, Controls the Decadal Regional Carbon Balance in the Western Russian Arctic. Glob. Change Biol. 2018, 24, 5188–5204. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Grosse, G.; Wagner, D. Land Cover Classification of Tundra Environments in the Arctic Lena Delta Based on Landsat 7 ETM+ Data and Its Application for Upscaling of Methane Emissions. Remote Sens. Environ. 2009, 113, 380–391. [Google Scholar] [CrossRef]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.J.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R.K. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef]
- Chakraborty, R.; Rachdi, I.; Thiele, S.; Booysen, R.; Kirsch, M.; Lorenz, S.; Gloaguen, R.; Sebari, I. A Spectral and Spatial Comparison of Satellite-Based Hyperspectral Data for Geological Mapping. Remote Sens. 2024, 16, 2089. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- NV5 Geospatial Software. Available online: https://www.nv5geospatialsoftware.com/ (accessed on 7 August 2025).
- Yanik, E.; Sezgin, T.M. Active Scene Learning. arXiv 2019, arXiv:1903.02832. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Sun, W.; Liu, Q. Few-Shot Learning with Mutual Information Enhancement for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar]
- Rasti, B.; Koirala, B.; Scheunders, P. Hapkecnn: Blind Nonlinear Unmixing for Intimate Mixtures Using Hapke Model and Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Mustard, J.; Pieters, C. Quantitative Abundance Estimates from Bidirectional Reflectance Measurements. J. Geophys. Res. 1987, 92, 617–626. [Google Scholar] [CrossRef]
- Siebels, K.; Goita, K.; Germain, M. Estimation of Mineral Abundance from Hyperspectral Data Using a New Supervised Neighbor-Band Ratio Unmixing Approach. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6754–6756. [Google Scholar] [CrossRef]
- Zou, J.; Lan, J.; Shao, Y. A Hierarchical Sparsity Unmixing Method to Address Endmember Variability in Hyperspectral Image. Remote Sens. 2018, 10, 738. [Google Scholar] [CrossRef]
- Lan, J.; Zou, J.; Hao, Y.; Zeng, Y.; Zhang, Y.; Dong, M. Research Progress on Unmixing of Hyperspectral Remote Sensing Imagery. J. Remote Sens. 2018, 22, 13–27. [Google Scholar] [CrossRef]
- Henrot, S.; Chanussot, J.; Jutten, C. Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images. IEEE Trans. Image Process. 2016, 25, 3219–3232. [Google Scholar] [CrossRef]
- Thouvenin, P.; Dobigeon, N.; Tourneret, J. Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability. IEEE Trans. Image Process. 2016, 25, 3979–3990. [Google Scholar] [CrossRef]
- Borsoi, R.; Imbiriba, T.; Closas, P.; Bermudez, J.; Richard, C. Kalman Filtering and Expectation Maximization for Multitemporal Spectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Y.; Wu, Z.; Du, Q.; Chanussot, J.; Wei, Z. Bayesian Unmixing of Hyperspectral Image Sequence with Composite Priors for Abundance and Endmember Variability. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Ma, L.; Chen, X.; Rao, Y. Research Progress of Spectral Mixture Analysis. J. Remote Sens. 2016, 20, 1102–1109. [Google Scholar]
- Koirala, B.; Rasti, B.; Bnoulkacem, Z.; Scheunders, P. Nonlinear Spectral Unmixing Using Bézier Surfaces. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Sun, S. Hyperspectral Subpixel Target Detection Based on Interaction Subspace Model. Pattern Recog. 2023, 139, 109464. [Google Scholar] [CrossRef]
- Song, X.; Zou, L.; Wu, L. Detection of Subpixel Targets on Hyperspectral Remote Sensing Imagery Based on Background Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2365–2377. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Liu, H. Research Hotspots and Frontiers in Agricultural Multispectral Technology: Bibliometrics and Scientometrics Analysis of the Web of Science. Front. Plant Sci. 2022, 13, 955340. [Google Scholar] [CrossRef]
- Ram, B.G.; Oduor, P.; Igathinathane, C.; Howatt, K.; Sun, X. A Systematic Review of Hyperspectral Imaging in Precision Agriculture: Analysis of Its Current State and Future Prospects. Comput. Electron. Agric. 2024, 222, 109037. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, D.; Xu, T. Characteristic Analysis and Decomposition of Mixed Pixels from UAV Hyperspectral Images in Rice Tillering Stage. Spectrosc. Spect. Anal. 2022, 42, 947–953. [Google Scholar]
- Mottus, M.; Pham, P.; Halme, E. IAIGA: A Novel Dataset for Multitask Learning of Continuous and Categorical Forest Variables from Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, S.; Di, B. Extracting Mineral Alteration Information Using WorldView-3 Data. Geosci. Front. 2017, 8, 1051–1062. [Google Scholar] [CrossRef]
- Van der Meer, F. Near-Infrared Laboratory Spectroscopy of Mineral Chemistry: A Review. Int. J. Appl. Earth Obs. 2018, 65, 71–78. [Google Scholar]
- Zhu, L.; Qin, K.; Zhao, Y. Research on Improved Stacked Sparse Autoencoders for Mineral Hyperspectral Endmember Extraction. Spectrosc. Spect. Anal. 2021, 41, 1288–1293. [Google Scholar]
- Lee, C.; Gasster, S.; Plaza, A.; Chang, C.; Huang, B. Recent Developments in High Performance Computing for Remote Sensing: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 508–527. [Google Scholar] [CrossRef]
- Gonzalez, C.; Resano, J.; Plaza, A.; Mozos, D. FPGA Implementation of Abundance Estimation for Spectral Unmixing of Hyperspectral Data Using the Image Space Reconstruction Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 248–261. [Google Scholar] [CrossRef]
- Lo, Y.C.; Wu, Y.C.; Yang, C.H. A 44.3-mW 62.4-fps Hyperspectral Image Processor for Spectral Unmixing in MAV Remote Sensing. IEEE J. Solid-State Circuits 2024, 60, 1818–1829. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Raharadja, S. GPU Implementation of Graph- Regularized Sparse Unmixing with Superpixel Structures. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2023, 16, 3378–3389. [Google Scholar] [CrossRef]
- Gao, J.; Sun, Y.; Zhang, W. Multi-GPU Based Parallel Design of the Ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral Images. Sensors 2019, 19, 598. [Google Scholar] [CrossRef]
- Shen, X.; Bao, W.; Liang, H. Superpixel-Guided Preprocessing Algorithm for Accelerating Hyperspectral Endmember Extraction Based on Spatial-Spectral Analysis. J. Appl. Remote Sens. 2021, 15, 026514. [Google Scholar] [CrossRef]
- White, P.A.; Frye, H.; Christensen, M.F.; Gelfand, A.E.; Silander, J.A. Spatial Functional Data Modeling of Plant Reflectances. Ann. Appl. Stat. 2022, 16, 1919–1936. [Google Scholar] [CrossRef]
- Hong, D.; Zhang, B.; Li, X.; Li, Y.; Li, C.; Yao, J.; Yokoya, N.; Li, H.; Ghamisi, P.; Jia, X.; et al. SpectralGPT: Spectral Remote Sensing Foundation Model. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 5227–5244. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Wang, X.; Peng, Y.; Sun, C.; Wang, S.; Zhong, Y. Hyperfree: A Channel-Adaptive and Tuning-Free Foundation Model for Hyperspectral Remote Sensing Imagery. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 10–17 June 2025; pp. 23048–23058. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Qu, H.; Zhang, P. Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review. Remote Sens. 2025, 17, 2968. https://doi.org/10.3390/rs17172968
Zou J, Qu H, Zhang P. Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review. Remote Sensing. 2025; 17(17):2968. https://doi.org/10.3390/rs17172968
Chicago/Turabian StyleZou, Jinlin, Hongwei Qu, and Peng Zhang. 2025. "Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review" Remote Sensing 17, no. 17: 2968. https://doi.org/10.3390/rs17172968
APA StyleZou, J., Qu, H., & Zhang, P. (2025). Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review. Remote Sensing, 17(17), 2968. https://doi.org/10.3390/rs17172968