Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data
Abstract
1. Introduction
- (1)
- We propose a small-pixel sampling technique combined with a deblurring algorithm to acquire high-resolution remote sensing images, supported by Zernike polynomial-based simulations of aberration-modulated small-pixel data.
- (2)
- We introduce a more sparse model (ℓwe), which incorporates a Welsch-weighted ℓ1-norm and ℓ0-norm to constrain gradient fidelity and image gradients, along with an efficient solver under the MAP framework.
- (3)
- Quantitative metrics and visual quality assessments on both synthetic and real remote sensing data demonstrate that our method outperforms state-of-the-art algorithms in both restoration accuracy and structural preservation, effectively addressing diffraction degradation under aberration modulation.
2. Weighted Sparse Model and Optimization for Small-Pixel Data
2.1. Small-Pixel Data PSF Analysis
2.2. Welsch-Weighted Sparse Model
2.3. Integrated Model and Optimization
2.3.1. Latent Image Estimation
Algorithm 1: Latent Image Estimation |
Input: Blurred image , initialized k(0), parameters , . repeat |
Update and using Equations (18)–(20). Update using Equation (22). . until |
Output: Final latent image . |
2.3.2. Blur Kernel Estimation
Algorithm 2: Blur Kernel k Estimation |
Input: Blurred image , parameters , . Initialize k from the previous pyramid level. while do Estimate using Algorithm 1. for t = 1 to 5 do |
Update t and Estimate k using Equations (25) and (27). . end for end while |
Output: Estimated blur kernel . |
2.3.3. Final Image Restoration
3. Experimental Results
3.1. Small-Pixel Data Simulation
3.2. Simulated Remote Sensing Image Processing Experiment
3.3. Real Remote Sensing Image Processing Experiments
4. Discussion
4.1. Ablation Study
4.2. Model Effectiveness Analysis
4.3. Convergence Analysis and Computational Efficiency
4.4. Key Parameters Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Wang, M.; Jiang, J. China’s high-resolution optical remote sensing satellites and their mapping applications. Geo-Spat. Inf. Sci. 2021, 24, 85–94. [Google Scholar] [CrossRef]
- Metwally, M.; Bazan, T.M.; Eltohamy, F. Design of very high-resolution satellite telescopes part I: Optical system design. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1202–1208. [Google Scholar] [CrossRef]
- Ge, J.J.; Wu, Y.C.; Chen, H. Research progress on high-resolution imaging system for optical remote sensing in aerospace. Chin. Opt. 2023, 16, 258–282. [Google Scholar] [CrossRef]
- Xu, Z.; Su, C.; Zhang, X. A semantic segmentation method with category boundary for Land Use and Land Cover (LULC) mapping of Very-High Resolution (VHR) remote sensing image. Int. J. Remote Sens. 2021, 42, 3146–3165. [Google Scholar] [CrossRef]
- Han, W.; Chen, J.; Wang, L.; Feng, R.; Li, F.; Wu, L.; Tian, T.; Yan, J. Methods for small, weak object detection in optical high-resolution remote sensing images: A survey of advances and challenges. IEEE Geosci. Remote Sens. Mag. 2021, 9, 8–34. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, L.; Li, X.; Ren, R. Building extraction in multitemporal high-resolution remote sensing imagery using a multifeature LSTM network. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1645–1649. [Google Scholar] [CrossRef]
- Chan, T.F.; Wong, C.K. Total variation blind deconvolution. IEEE Trans. Image Process. 1998, 7, 370–375. [Google Scholar] [CrossRef]
- Yang, L.; Ren, J. Remote sensing image restoration using estimated point spread function. In Proceedings of the 2010 International Conference on Information, Networking and Automation (ICINA), Kunming, China, 18–19 October 2010; Volume 1, pp. V1-48–V1-52. [Google Scholar]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Efficient marginal likelihood optimization in blind deconvolution. In Proceedings of the CVPR, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2657–2664. [Google Scholar]
- Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 233–240. [Google Scholar]
- Xu, L.; Zheng, S.; Jia, J. Unnatural l0 sparse representation for natural image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1107–1114. [Google Scholar]
- Pan, J.; Hu, Z.; Su, Z.; Yang, M.-H. L0-Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 342–355. [Google Scholar] [CrossRef]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding and evaluating blind deconvolution algorithms. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971. [Google Scholar]
- Joshi, N.; Szeliski, R.; Kriegman, D.J. PSF estimation using sharp edge prediction. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Xu, L.; Jia, J. Two-phase kernel estimation for robust motion deblurring. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 157–170. [Google Scholar]
- Pan, J.; Lin, Z.; Su, Z.; Yang, M.-H. Robust kernel estimation with outliers handling for image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2800–2808. [Google Scholar]
- Dong, J.; Pan, J.; Su, Z.; Yang, M.-H. Blind image deblurring with outlier handling. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2478–2486. [Google Scholar]
- Pan, J.; Sun, D.; Pfister, H.; Yang, M.-H. Blind image deblurring using dark channel prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1628–1636. [Google Scholar]
- Wen, F.; Ying, R.; Liu, Y.; Liu, P.; Truong, T.-K. A simple local minimal intensity prior and an improved algorithm for blind image deblurring. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2923–2937. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, H.; Li, Z. Fast blind deconvolution using a deeper sparse patch-wise maximum gradient prior. Signal Process. Image Commun. 2021, 90, 116050. [Google Scholar] [CrossRef]
- Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8174–8182. [Google Scholar]
- Cho, S.; Ji, S.; Hong, J.; Jung, S.; Ko, S. Rethinking coarse-to-fine approach in single image deblurring. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4621–4630. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. Deblurgan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8183–8192. [Google Scholar]
- Zhang, D.; Tang, N.; Qu, Y. Joint motion deblurring and super-resolution for single image using diffusion model and gan. IEEE Signal Process. Lett. 2024, 31, 736–740. [Google Scholar] [CrossRef]
- Jiang, W.; Sun, Y.; Lei, L.; Kuang, G.; Ji, K. Change detection of multisource remote sensing images: A review. Int. J. Digit. Earth 2024, 17, 2398051. [Google Scholar] [CrossRef]
- Archana, R.; Jeevaraj, P.S.E. Deep learning models for digital image processing: A review. Artif. Intell. Rev. 2024, 57, 11. [Google Scholar] [CrossRef]
- Chen, L.; Fang, F.; Lei, S.; Li, F.; Zhang, G. Enhanced sparse model for blind deblurring. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 631–646. [Google Scholar]
- Gong, Z.; Shen, Z.; Toh, K.C. Image restoration with mixed or unknown noises. Multiscale Model. Simul. 2014, 12, 458–487. [Google Scholar] [CrossRef]
- Ge, X.; Liu, J.; Hu, D.; Tan, J. An extended sparse model for blind image deblurring. Signal Image Video Process. 2024, 18, 1863–1877. [Google Scholar] [CrossRef]
- Liu, J.; Yan, M.; Zeng, T. Surface-Aware Blind Image Deblurring. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1041–1055. [Google Scholar] [CrossRef]
- Li, L.; Pan, J.; Lai, W.S.; Gao, C.; Sang, N.; Yang, M.-H. Blind Image Deblurring via Deep Discriminative Priors. Int. J. Comput. Vis. 2019, 127, 1025–1043. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, J.; Zhou, J.; Chen, H.; Huang, H.; Li, Z. Image deblurring using a robust loss function. Circuits Syst. Signal Process. 2022, 41, 1704–1734. [Google Scholar] [CrossRef]
- Köhler, R.; Hirsch, M.; Mohler, B.; Schölkopf, B.; Harmeling, S. Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In Proceedings of the Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–40. [Google Scholar]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, M.H. Learning Good Regions to Deblur Images. Int. J. Comput. Vis. 2015, 115, 345–362. [Google Scholar] [CrossRef]
PSNR | SSIM | ER | SUCCESS (ER < 5) | |
---|---|---|---|---|
Krishnan et al. [10] | 21.59 | 0.3112 | 608.69 | 0.00% |
Pan et al. [18] | 25.31 | 0.5765 | 53.92 | 7.50% |
Wen et al. [19] | 30.58 | 0.8961 | 3.49 | 92.5% |
Xu et al. [20] | 30.25 | 0.8990 | 3.47 | 92.5% |
Pan et al. [16] | 30.66 | 0.8984 | 3.71 | 82.5% |
Dong et al. [17] | 29.96 | 0.8734 | 4.87 | 70.0% |
Chen et al. [25] | 30.48 | 0.8986 | 3.13 | 90.0% |
Ge et al. [27] | 30.27 | 0.8962 | 3.25 | 90.0% |
Our | 31.45 | 0.9178 | 2.48 | 97.5% |
Airport | Bridge | Forest | Desert | Dense Residential | Industrial | Storage Tanks | Farmland | |
---|---|---|---|---|---|---|---|---|
PSNR | 34.69 | 35.25 | 30.78 | 27.78 | 32.94 | 32.64 | 26.95 | 37.85 |
SSIM | 0.9571 | 0.9592 | 0.9221 | 0.8617 | 0.9422 | 0.9403 | 0.8682 | 0.9596 |
(b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | ||
---|---|---|---|---|---|---|---|---|---|---|
Figure 9 | E | 14.08 | 13.78 | 13.79 | 13.78 | 13.71 | 13.74 | 13.78 | 13.78 | 13.81 |
GMG | 14.50 | 9.630 | 9.820 | 9.183 | 7.778 | 7.976 | 9.277 | 9.319 | 11.23 | |
LS | 6.154 | 4.264 | 4.285 | 3.986 | 3.286 | 3.320 | 4.040 | 4.055 | 6.020 | |
Figure 10 | E | 14.24 | 14.28 | 14.26 | 14.27 | 14.25 | 14.23 | 14.28 | 14.29 | 14.29 |
GMG | 17.43 | 33.18 | 19.17 | 19.67 | 18.71 | 16.37 | 20.27 | 20.95 | 21.37 | |
LS | 12.17 | 22.79 | 13.97 | 14.24 | 13.59 | 11.81 | 14.40 | 14.66 | 14.64 | |
Figure 11 | E | 15.03 | 14.75 | 14.84 | 14.85 | 14.83 | 14.82 | 14.86 | 14.86 | 14.84 |
GMG | 42.06 | 57.72 | 33.66 | 33.69 | 31.57 | 29.89 | 33.81 | 33.40 | 34.03 | |
LS | 29.68 | 42.47 | 24.32 | 24.03 | 23.79 | 22.43 | 24.61 | 24.47 | 24.64 | |
Figure 12 | E | 14.39 | 14.21 | 14.22 | 14.22 | 14.21 | 14.21 | 14.23 | 14.23 | 14.24 |
GMG | 9.124 | 6.408 | 6.566 | 6.589 | 6.362 | 6.267 | 6.70 | 6.713 | 7.004 | |
LS | 2.951 | 2.320 | 2.400 | 2.415 | 2.339 | 2.160 | 2.484 | 2.490 | 2.599 |
ℓ0 + ℓ0 | ℓ0 + ℓwe | ℓwe + ℓ0 | ℓwe + ℓwe | |
---|---|---|---|---|
PSNR | 30.08 | 30.28 | 30.45 | 31.45 |
SSIM | 0.8934 | 0.8969 | 0.8968 | 0.9178 |
255 × 255 | 600 × 600 | 1000 × 1000 | |
Krishnan et al. [10] | 28.69 | 133.84 | 319.05 |
Pan et al. [18] | 108.55 | 550.12 | 1495.83 |
Wen et al. [19] | 9.98 | 24.74 | 61.25 |
Xu et al. [20] | 4.41 | 21.27 | 60.10 |
Pan et al. [16] | 99.81 | 338.65 | 865.89 |
Dong et al. [17] | 125.85 | 352.44 | 894.71 |
Chen et al. [27] | 4.64 | 25.87 | 68.88 |
Ge et al. [29] | 8.87 | 44.80 | 131.27 |
Our | 4.68 | 26.02 | 69.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Liu, C.; Bai, M.; Zhao, Y.; Ma, Y.; Liu, S. Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data. Remote Sens. 2025, 17, 2979. https://doi.org/10.3390/rs17172979
Yang C, Liu C, Bai M, Zhao Y, Ma Y, Liu S. Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data. Remote Sensing. 2025; 17(17):2979. https://doi.org/10.3390/rs17172979
Chicago/Turabian StyleYang, Chenglong, Chunyu Liu, Menghan Bai, Yingming Zhao, Yunhan Ma, and Shuai Liu. 2025. "Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data" Remote Sensing 17, no. 17: 2979. https://doi.org/10.3390/rs17172979
APA StyleYang, C., Liu, C., Bai, M., Zhao, Y., Ma, Y., & Liu, S. (2025). Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data. Remote Sensing, 17(17), 2979. https://doi.org/10.3390/rs17172979