Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau
Abstract
1. Introduction
2. Data and Methods
2.1. Model Configuration
2.2. Integration of Remote Sensing Data
2.3. Observational and Remote Sensing Datasets
3. Results
3.1. Temperature Simulation Performance
3.2. Land Surface Parameter and Cloud Fraction Differences Between EXPcontrol and EXPglass
3.2.1. LAI Differences Between EXPcontrol and EXPglass
3.2.2. FVC Differences Between EXPcontrol and EXPglass
3.2.3. Surface Albedo Differences Between EXPcontrol and EXPglass
3.2.4. Snow Depth Differences Between EXPcontrol and EXPglass
3.2.5. Cloud Fraction Differences Between EXPcontrol and EXPglass
3.3. Impacts on Surface Radiation Fluxes
3.4. Impacts on Surface Turbulent Heat Flux
3.5. Impacts on TSK
3.6. Possible Mechanism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Song, K.; Hu, L. China’s largest scale ecological migration in the three-river headwater region. Ambio 2010, 39, 443–446. [Google Scholar] [CrossRef]
- Yin, T.; Feng, Y.; Liang, S.; Wang, G.; Yuan, N.; Yan, D.; Wu, P.; Kuang, X.; Wan, L. A suitable method for alpine wetland delineation: An example for the headwater area of the yellow river, Tibetan Plateau. Front. Environ. Sci. 2022, 10, 1062954. [Google Scholar] [CrossRef]
- Xinliang, X.; Jiyuan, L.; Quanqin, S.; Jiangwen, F. The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years. Geogr. Res. 2008, 27, 829–839. [Google Scholar]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L. Climate change and its impact on the eco-environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China. Int. J. Environ. Res. Public Health 2015, 12, 12057–12081. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, Y.; Bai, P.; Chen, L.; Guo, X.; Xing, Y.; Feng, A.; Yu, W.; Huang, M. Changed evapotranspiration and its components induced by greening vegetation in the Three Rivers Source of the Tibetan Plateau. J. Hydrol. 2024, 633, 130970. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.-X.; Dong, N.-P.; Xie, W.-N.; Li, H.-G.; Guan, Z.; Wen, F.; Wang, H.; Chen, D. Increased southerly and easterly water vapor transport contributed to the dry-to-wet transition of summer precipitation over the Three-River Headwaters in the Tibetan Plateau. Adv. Clim. Change Res. 2023, 14, 502–510. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, C.; Xie, Y.; Liu, B.; Yin, S.; Liu, Y.; Hao, Y. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961–2012. Sci. Total Environ. 2017, 592, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zhou, Y.; Zhu, J.; Liu, W.; Wang, F.; Wang, L.; Yan, F.; Wang, F.; Yang, G.; Luo, W. Spatial patterns of ecosystem vulnerability changes during 2001–2011 in the three-river source region of the Qinghai-Tibetan Plateau, China. J. Arid Land 2016, 8, 23–35. [Google Scholar] [CrossRef]
- Luo, S.; Fang, X.; Lyu, S.; Ma, D.; Chang, Y.; Song, M.; Chen, H. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. Clim. Res. 2016, 67, 241–255. [Google Scholar] [CrossRef]
- Jiao, Y.; Tseten, Y.; Yang, Q.; Bai, L. Spatiotemporal variability of near-surface air temperature lapse rates in the Qinghai–Tibet plateau using high-density meteorological observations. Sci. Rep. 2025, 15, 20702. [Google Scholar] [CrossRef]
- Peng, Y.; Duan, A.; Zhang, C.; Tang, B.; Zhao, X. Evaluation of the surface air temperature over the Tibetan Plateau among different reanalysis datasets. Front. Environ. Sci. 2023, 11, 1152129. [Google Scholar] [CrossRef]
- Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.; Bosilovich, M.G. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Clim. 2012, 25, 1916–1944. [Google Scholar] [CrossRef]
- Phan, T.N.; Kappas, M. Application of MODIS land surface temperature data: A systematic literature review and analysis. J. Appl. Remote Sens. 2018, 12, 041501. [Google Scholar] [CrossRef]
- Miao, X.; Guo, W.; Hu, X.; Wang, L.; Li, Y.; Li, W. Divergent transformation of wet to cold bias on the Tibetan Plateau in climate models during snow season. Geophys. Res. Lett. 2024, 51, e2024GL110762. [Google Scholar] [CrossRef]
- Zhou, X.; Ding, B.; Yang, K.; Pan, J.; Ma, X.; Zhao, L.; Li, X.; Shi, J. Reducing the cold Bias of the WRF model over the Tibetan plateau by implementing a snow coverage-topography relationship and a fresh snow albedo scheme. J. Adv. Model. Earth Syst. 2023, 15, e2023MS003626. [Google Scholar] [CrossRef]
- Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett. 2018, 13, 044028. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Chen, G.; Wang, G.; Zhang, M. Decomposition and reduction of WRF-modeled wintertime cold biases over the Tibetan Plateau. Clim. Dyn. 2024, 62, 4189–4203. [Google Scholar] [CrossRef]
- Yue, S.; Yang, K.; Lu, H.; Zhou, X.; Chen, D.; Guo, W. Representation of stony surface-atmosphere interactions in WRF reduces cold and wet biases for the Southern Tibetan Plateau. J. Geophys. Res. Atmos. 2021, 126, e2021JD035291. [Google Scholar] [CrossRef]
- Glotfelty, T.; Ramírez-Mejía, D.; Bowden, J.; Ghilardi, A.; West, J.J. Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0). Geosci. Model Dev. 2021, 14, 3215–3249. [Google Scholar] [CrossRef]
- Lü, F.; Yan, X. The three rivers source region alpine grassland ecosystem was a weak carbon sink based on BEPS model analysis. Remote Sens. 2022, 14, 4795. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Passe, U.; Zhang, T.; Wang, C.; Asrar, G.R.; Li, Q.; Li, H. Improving estimation of diurnal land surface temperatures by integrating weather modeling with satellite observations. Remote Sens. Environ. 2024, 315, 114393. [Google Scholar] [CrossRef]
- Bounoua, L.; Zhang, T.; Thome, K.J.; Ed-dahmany, N.; Lachkham, M.A.; Bahi, H.; Yacoubi Khebiza, M.; Messouli, M. The Urban Archipelago Effect: A Case Study in Morocco. Urban Sci. 2025, 9, 97. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. Int. J. Climatol. 2021, 41, 743–762. [Google Scholar] [CrossRef]
- Han, S.; Liu, B.; Shi, C.; Liu, Y.; Qiu, M.; Sun, S. Evaluation of CLDAS and GLDAS datasets for near-surface air temperature over major land areas of China. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Niu, X.; Tang, J.; Chen, D.; Wang, S.; Ou, T.; Fu, C. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau. Clim. Dyn. 2021, 57, 1135–1153. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, Y.; Dong, W.; Qin, Y.; Chu, W.; Yang, K.; Letu, H.; Huang, L. Alleviated WRF summer wet bias over the Tibetan Plateau using a new cloud macrophysics scheme. J. Adv. Model. Earth Syst. 2023, 15, e2023MS003616. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Yang, K.; Lu, H.; Zhao, L.; Zheng, D. Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: Observation and parameterization. J. Hydrometeorol. 2021, 22, 2659–2674. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Lyu, S.; Zuo, H.; Hu, W. Coupling soil gravel parameterization into WRF: A case study of the Tibetan Plateau vortex. J. Adv. Model. Earth Syst. 2025, 17, e2024MS004923. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Finkelnburg, R.; Richters, J.; Yang, W.; Yao, T. WRF simulation of a precipitation event over the Tibetan Plateau, China–an assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci. 2011, 15, 1795–1817. [Google Scholar] [CrossRef]
- Gupta, P.; Verma, S.; Mukhopadhyay, P.; Bhatla, R.; Payra, S. Fidelity of WRF model in simulating heat wave events over India. Sci. Rep. 2024, 14, 2693. [Google Scholar] [CrossRef]
- Du, S.; Zhuo, L.; Kendon, E.J.; Han, D. Exploring suitable domain size for high-resolution urban rainfall simulation. Urban Clim. 2025, 61, 102489. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-31–38-34. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Ma, Y.-F.; Wang, Y.; Xian, T.; Tian, G.; Lu, C.; Mao, X.; Wang, L.-P. Impact of PBL schemes on multiscale WRF modeling over complex terrain, Part I: Mesoscale simulations. Atmos. Res. 2024, 297, 107117. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Ma, Y.; Xie, Z.; Yang, S.; Wang, J. Analysis of local land-atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau based on field measurements and ERA5. Atmos. Res. 2020, 243, 105025. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, L.; Li, F.; Zhu, J. Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet. Atmos. Res. 2020, 234, 104739. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Han, C.; Ma, Y. A performance evaluation of various physics schemes on the predictions of precipitation and temperature over the Tibet Autonomous Region of China. Atmos. Res. 2023, 292, 106878. [Google Scholar] [CrossRef]
- Ji, P.; Yuan, X.; Li, D. Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998–2013. J. Clim. 2020, 33, 1881–1895. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Wu, J.; GAO, X.-J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Huang, R.; Chen, J.; Feng, Z.; Yang, Y.; You, H.; Han, X. Fitness for purpose of several fractional vegetation cover products on monitoring vegetation cover dynamic change—A case study of an alpine grassland ecosystem. Remote Sens. 2023, 15, 1312. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, W.; Yang, Y.; Zhang, W.; Yan, J.; Chen, X.; Li, S.; Mo, X. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau. Sci. Rep. 2017, 7, 8191. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Wu, L.; Ma, R.; Wang, Y.; Zhang, J.; Wang, L.; Liu, B.; Lu, X.; Jiang, M. Grassland greening impacts on global land surface temperature. Sci. Total Environ. 2022, 838, 155851. [Google Scholar] [CrossRef]
- Qi, Q.; Yang, K.; Li, H.; Ai, L.; Wang, C.; Wu, T. Negative impacts of the withered grass stems on winter snow cover over the Tibetan Plateau. Agric. For. Meteorol. 2024, 352, 110053. [Google Scholar] [CrossRef]
- Wu, F.; You, Q.; Pepin, N.; Zhai, P.; Kang, S. Quantifying processes of winter daytime and nighttime warming over the Tibetan Plateau. Clim. Dyn. 2025, 63, 9. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Menenti, M.; Su, R.; Yao, N.; Ma, W. Improved parameterization of snow albedo in Noah coupled with Weather Research and Forecasting: Applicability to snow estimates for the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2021, 25, 4967–4981. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Zhu, G.; Wu, X.; Fan, W.; Li, D.; Zhou, Y. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 2018, 206, 174–188. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Z. Evaluation of the version 5.0 global land surface satellite (GLASS) leaf area index product derived from MODIS data. Int. J. Remote Sens. 2020, 41, 9140–9160. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Jia-Wen, Z.; Xiao-Dong, Z. Comparison of the influence of interannual vegetation variability between offline and online simulations. Atmos. Ocean. Sci. Lett. 2014, 7, 453–457. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Y. Simulated impacts of land cover change on summer climate in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015102. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-mo ment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Wang, J.; Zhang, P. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens. Environ. 2012, 127, 14–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, L.; Meng, X.; Shang, L.; Li, Z.; Chen, H.; Deng, M.; An, Y.; Liu, Y. Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau. Remote Sens. 2025, 17, 2985. https://doi.org/10.3390/rs17172985
Wang Y, Zhao L, Meng X, Shang L, Li Z, Chen H, Deng M, An Y, Liu Y. Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau. Remote Sensing. 2025; 17(17):2985. https://doi.org/10.3390/rs17172985
Chicago/Turabian StyleWang, Yuteng, Lin Zhao, Xianhong Meng, Lunyu Shang, Zhaoguo Li, Hao Chen, Mingshan Deng, Yingying An, and Yuanpu Liu. 2025. "Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau" Remote Sensing 17, no. 17: 2985. https://doi.org/10.3390/rs17172985
APA StyleWang, Y., Zhao, L., Meng, X., Shang, L., Li, Z., Chen, H., Deng, M., An, Y., & Liu, Y. (2025). Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau. Remote Sensing, 17(17), 2985. https://doi.org/10.3390/rs17172985