Uncertainty Analysis of Snow Depth Retrieval Products over China via the Triple Collocation Method and Ground-Based Measurements
Abstract
1. Introduction
2. Data and Methodology
2.1. Ground-Based Snow Depth Measurements
2.2. Snow Depth Retrieval Methods and Existing Products
Product Name | Institution | Satellite Data Used | Algorithm | Assimilation of Snow Depth Data | Resolution | Time Series | Refs. |
---|---|---|---|---|---|---|---|
Pixel-based | BNU-China | SSM/I, SSMIS | Semiempirical regression method using satellite observations and machine learning-based snow depth estimates | No | 25 km & daily | 1988–present | [30] |
GlobSnow-v3.0 | FMI | SMMR, SSM/I, SSMIS | Bayesian assimilation combining ground data with satellite observations | Yes | 25 km & daily | 1979–present | [33,34] |
ERA5-land | ECMWF | / | Land surface hydrology (HTESSEL) model with ERA5 atmospheric variables | No | 9 km & hourly | 1950–present | [35] |
MERRA2 | NASA | / | Catchment land surface model with MERRA2 atmospheric variables | No | 50 km & hourly | 1980–present | [38] |
2.3. Triple Collocation Method for Error Analysis
2.4. Workflow for Elevating Gridded Snow Depth Products Across China
3. Results
3.1. Validation and Comparison of Snow Depth Estimates
3.2. Uncertainty Analysis Based on the Triple Collocation Method
3.3. Comparison of the Errors Between the TCA-Derived and Ground-Based Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TCA | Triple collocation analysis |
CMA | China Meteorology Administration |
NXJ | Northern Xinjiang |
NE | Northeast China |
QTP | Qinghai-Tibet Plateau |
effGS | Effective grain size |
PMW | Passive microwave remote sensing |
AMSR2 | Advanced Microwave Scanning Radiometer 2 |
MWRI | Micro-Wave Radiation Imager |
MERRA2 | Modern-Era Retrospective analysis for Research and Applications, version 2 |
ERA5-land | Land component of the fifth generation of European ReAnalysis |
FMI | Finnish Meteorological Institute |
NASA | National Aeronautics and Space Administration |
References
- Gastineau, G.; Frankignoul, C.; Gao, Y.; Liang, Y.C.; Kwon, Y.O.; Cherchi, A.; Ghosh, R.; Manzini, E.; Matei, D.; Mecking, J.; et al. Forcing and impact of the Northern Hemisphere continental snow cover in 1979–2014. Cryosphere 2023, 17, 2157–2184. [Google Scholar] [CrossRef]
- Mortimer, C.; Mudryk, L.; Derksen, C.; Luojus, K.; Brown, R.; Kelly, R.; Tedesco, M. Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere 2020, 14, 1579–1594. [Google Scholar] [CrossRef]
- Mudryk, L.R.; Derksen, C.; Howell, S.; Laliberté, F.; Thackeray, C.; Sospedra-Alfonso, R.; Vionnet, V.; Kushner, P.J.; Brown, R. Canadian snow and sea ice: Historical trends and projections. Cryosphere 2018, 12, 1157–1176. [Google Scholar] [CrossRef]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Smith, R.; Zagona, E.; Kasprzyk, J.; Bonham, N.; Alexander, E.; Butler, A.; Prairie, J.; Jerla, C. Decision Science Can Help Address the Challenges of Long-Term Planning in the Colorado River Basin. J. Am. Water Resour. Assoc. 2022, 58, 735–745. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Meadows, M.W.; Lucas, R.G.; Hart, S.C. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour. Res. 2014, 50, 1448–1456. [Google Scholar] [CrossRef]
- Currier, W.R.; Lundquist, J.D. Snow Depth Variability at the Forest Edge in Multiple Climates in the Western United States. Water Resour. Res. 2018, 54, 8756–8773. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.; Zheng, X.; Jiang, T.; Li, X.; Qiao, D. Effects of Winter Snow Cover on Spring Soil Moisture Based on Remote Sensing Data Product over Farmland in Northeast China. Remote Sens. 2020, 12, 2716. [Google Scholar] [CrossRef]
- Pulliainen, J.; Aurela, M.; Laurila, T.; Aalto, T.; Takala, M.; Salminen, M.; Kulmala, M.; Barr, A.; Heimann, M.; Lindroth, A.; et al. Early snowmelt significantly enhances boreal springtime carbon uptake. Proc. Natl. Acad. Sci. USA 2017, 114, 11081–11086. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Ma, X.; Wang, Y.; Feng, Q.; Hao, X.; Liang, T. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 2016, 10, 2453–2463. [Google Scholar] [CrossRef]
- Herbert, J.N.; Raleigh, M.S.; Small, E.E. Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data. Cryosphere 2024, 18, 3495–3512. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Cohen, J.; Kontu, A.; Vehviläinen, J.; Hannula, H.R.; Merkouriadi, I.; Scheiblauer, S.; Rott, H.; Nagler, T.; Ripper, E.; et al. Airborne SnowSAR data at X and Ku bands over boreal forest, alpine and tundra snow cover. Earth Syst. Sci. Data. 2022, 14, 3915–3945. [Google Scholar] [CrossRef]
- Hoareau, N.; Portabella, M.; Lin, W.; Ballabrera-Poy, J.; Turiel, A. Error Characterization of Sea Surface Salinity Products Using Triple Collocation Analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5160–5168. [Google Scholar] [CrossRef]
- Scott, K.A. Assessment of Categorical Triple Collocation for Sea Ice/Open Water Observations: Application to the Gulf of Saint Lawrence. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9659–9673. [Google Scholar] [CrossRef]
- Chen, C.; He, M.; Chen, Q.; Zhang, J.; Li, Z.; Wang, Z.; Duan, Z. Triple collocation-based error estimation and data fusion of global gridded precipitation products over the Yangtze River basin. J. Hydrol. 2022, 605, 127307. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Kim, H.; Crow, W.; Li, X.; Wagner, W.; Hahn, S.; Lakshmi, V. True global error maps for SMAP, SMOS, and ASCAT soil moisture data based on machine learning and triple collocation analysis. Remote Sens. Environ. 2023, 298, 113776. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Shi, J.; Cosh, M.H.; Ji, D.; Jiang, L.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [Google Scholar] [CrossRef]
- Li, H.; Chai, L.; Crow, W.; Dong, J.; Liu, S.; Zhao, S. The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets. Remote Sens. Environ. 2022, 281, 113240. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, G.; Behrangi, A.; Wang, T.; Tan, X.; Ma, Z.; Xiong, W. Precipitation Merging Based on the Triple Collocation Method Across Mainland China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3161–3176. [Google Scholar] [CrossRef]
- McColl, K.A.; Roy, A.; Derksen, C.; Konings, A.G.; Alemohammed, S.H.; Entekhabi, D. Triple collocation for binary and categorical variables: Application to validating landscape freeze/thaw retrievals. Remote Sens. Environ. 2016, 176, 31–42. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Zou, D.; Rodriguez-Fernandez, N.; Mialon, A.; Richaume, P.; Xiao, J.; Ma, J.; Fan, L.; et al. Use of a new Tibetan Plateau network for permafrost to characterize satellite-based products errors: An application to soil moisture and freeze/thaw. Remote Sens. Environ. 2024, 300, 113899. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Chen, X.; Tangdamrongsub, N.; Gao, M.; Sun, S.; Qiu, J.; Wei, L.; Gao, H.; Duan, Z. Statistical uncertainty analysis-based precipitation merging (SUPER): A new framework for improved global precipitation estimation. Remote Sens. Environ. 2022, 283, 113299. [Google Scholar] [CrossRef]
- Qiao, D.; Li, Z.; Zeng, J.; Liang, S.; McColl, K.A.; Bi, H.; Zhou, J.; Zhang, P. Uncertainty Characterization of Ground-Based, Satellite, and Reanalysis Snow Depth Products Using Extended Triple Collocation. Water Resour. Res. 2022, 58, e2021WR030895. [Google Scholar] [CrossRef]
- He, L.; Xue, B.; Hui, F.; Cheng, X. Triple Collocation-Based Merging of Winter Snow Depth Retrievals on Arctic Sea Ice Derived From Three Different Algorithms Using AMSR2. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4301915. [Google Scholar] [CrossRef]
- Yang, J.W.; Jiang, L.M.; Lemmetyinen, J.; Pan, J.M.; Luojus, K.; Takala, M. Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach. Remote Sens. Environ. 2021, 264, 112630. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Pan, J.; Shi, J.; Wu, S.; Wang, J.; Pan, F. Comparison of Machine Learning-Based Snow Depth Estimates and Development of a New Operational Retrieval Algorithm over China. Remote Sens. 2022, 14, 2800. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Lemmetyinen, J.; Luojus, K.; Takala, M.; Pan, J.; Wu, S. Validation of remotely sensed estimates of snow water equivalent using multiple reference datasets from the middle and high latitudes of China. J. Hydrol. 2020, 590, 125499. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Wu, S.; Wang, G.; Wang, J.; Liu, X. Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI. Remote Sens. 2019, 11, 977. [Google Scholar] [CrossRef]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Takala, M.; Lemmetyinen, J.; Mortimer, C.; Derksen, C.; Mudryk, L.; Moisander, M.; Hiltunen, M.; Smolander, T.; et al. GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset. Sci. Data 2021, 8, 163. [Google Scholar] [CrossRef]
- Majidi, F.; Sabetghadam, S.; Gharaylou, M.; Rezaian, R. Evaluation of the performance of ERA5, ERA5-Land and MERRA-2 reanalysis to estimate snow depth over a mountainous semi-arid region in Iran. J. Hydrol. Reg. Stud. 2025, 58, 102246. [Google Scholar] [CrossRef]
- Xiao, L.; Che, T.; Dai, L. Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980–2016. Remote Sens. 2020, 12, 3253. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Zhao, B. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Oceans 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
Product | TCA | Station | ||||||
---|---|---|---|---|---|---|---|---|
NE | NXJ | QTP | China | NE | NXJ | QTP | China | |
Pixel-based | 3.21 (3) | 6.19 (3) | 3.64 (2) | 3.35 (2) | 4.07 (3) | 5.28 (1) | 3.68 (2) | 3.58 (2) |
GlobSnow-v3.0 | 5.94 (4) | 8.44 (4) | 4.58 (3) | 4.85 (4) | 4.59 (4) | 8.42 (4) | 5.76 (3) | 5.88 (4) |
ERA5-Land | 3.02 (2) | 6.19 (2) | 8.46 (4) | 3.61 (3) | 3.93 (2) | 7.27 (2) | 9.05 (4) | 4.36 (3) |
MERRA2 | 2.95 (1) | 3.41 (1) | 1.29 (1) | 2.28 (1) | 3.87 (1) | 7.31 (3) | 2.27 (1) | 3.24 (1) |
Product | TCA | Ground Sampling Data |
---|---|---|
Pixel-based | 5.27 (2) | 3.88 (1) |
ERA5-Land | 7.23 (3) | 6.84 (3) |
MERRA2 | 2.41 (1) | 5.71 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Jiang, L.; Chen, M.; Ying, J. Uncertainty Analysis of Snow Depth Retrieval Products over China via the Triple Collocation Method and Ground-Based Measurements. Remote Sens. 2025, 17, 3036. https://doi.org/10.3390/rs17173036
Yang J, Jiang L, Chen M, Ying J. Uncertainty Analysis of Snow Depth Retrieval Products over China via the Triple Collocation Method and Ground-Based Measurements. Remote Sensing. 2025; 17(17):3036. https://doi.org/10.3390/rs17173036
Chicago/Turabian StyleYang, Jianwei, Lingmei Jiang, Meiqing Chen, and Jiajie Ying. 2025. "Uncertainty Analysis of Snow Depth Retrieval Products over China via the Triple Collocation Method and Ground-Based Measurements" Remote Sensing 17, no. 17: 3036. https://doi.org/10.3390/rs17173036
APA StyleYang, J., Jiang, L., Chen, M., & Ying, J. (2025). Uncertainty Analysis of Snow Depth Retrieval Products over China via the Triple Collocation Method and Ground-Based Measurements. Remote Sensing, 17(17), 3036. https://doi.org/10.3390/rs17173036