Adaptive Resolution VGICP Algorithm for Robust and Efficient Point-Cloud Registration
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Datasets
2.1.1. Synthetic Dataset
2.1.2. Multi-Flightline UAV LiDAR Scanning Data
2.1.3. KITTI Public Dataset
2.2. Methods
2.2.1. Initial Resolution Estimation
2.2.2. Resolution Updating
2.2.3. Termination of Iteration
2.2.4. Transformation Estimation
3. Results
3.1. Simulated Experiments
3.2. Real-World Experiments on Multi-Flightline UVA LiDAR Data
3.3. Real-World Experiments Using Data Acquired from Vehicle-Mounted LiDAR Sensors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Liu, B.; Feng, C.; Vallespi-Gonzalez, C.; Wellington, C. 3D Point Cloud Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization, and Perception. IEEE Signal Process. Mag. 2021, 38, 68–86. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, S.; Huang, W. 3D Point Cloud for Cultural Heritage: A Scientometric Survey. Remote Sens. 2022, 14, 5542. [Google Scholar] [CrossRef]
- Crisan, A.; Pepe, M.; Costantino, D.; Herban, S. From 3D Point Cloud to an Intelligent Model Set for Cultural Heritage Conservation. Heritage 2024, 7, 1419–1437. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Wu, K.; Zhang, X.; Sun, J.; Peng, S.; Li, J.; Wang, M. 3D Point Cloud on Semantic Information for Wheat Reconstruction. Agriculture 2021, 11, 450. [Google Scholar] [CrossRef]
- Fusaro, D.; Magistri, F.; Behley, J.; Pretto, A.; Stachniss, C. Horticultural Temporal Fruit Monitoring via 3D Instance Segmentation and Re-Identification Using Point Clouds. arXiv 2024, arXiv:2411.07799. [Google Scholar] [CrossRef]
- Drokin, I.; Ericheva, E. Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts, Tbilisi, Georgia, 16–18 December 2021; Volume 12602, pp. 201–215. [Google Scholar]
- Saiti, E.; Theoharis, T. Multimodal Registration across 3D Point Clouds and CT-Volumes. Comput. Graph. 2022, 106, 259–266. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, S. A Review of 3D Reconstruction Techniques in Civil Engineering and Their Applications. Adv. Eng. Inform. 2018, 37, 163–174. [Google Scholar] [CrossRef]
- Blomley, R.; Weinmann, M.; Leitloff, J.; Jutzi, B. Shape distribution features for point cloud analysis—A geometric histogram approach on multiple scales. ISPRS Ann. 2014, II-3, 9. [Google Scholar] [CrossRef]
- Accurate and Serialized Dense Point Cloud Reconstruction for Aerial Video Sequences. Available online: https://www.mdpi.com/2072-4292/15/6/1625 (accessed on 2 July 2025).
- Zhuang, Z.; Zhi, Z.; Han, T.; Chen, Y.; Chen, J.; Wang, C.; Cheng, M.; Zhang, X.; Qin, N.; Ma, L. A Survey of Point Cloud Completion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5691–5711. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A Comprehensive Survey on Point Cloud Registration. arXiv 2021, arXiv:2103.02690. [Google Scholar] [CrossRef]
- Theiler, P.W.; Wegner, J.D.; Schindler, K. Globally Consistent Registration of Terrestrial Laser Scans via Graph Optimization. ISPRS J. Photogramm. Remote Sens. 2015, 109, 126–138. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Wang, Z.; Cao, X.; Ouyang, X.; Zhang, X.; Zeng, Z.; Zeng, Z.; Lu, B.; Xia, Z.; et al. 3D Registration in 30 Years: A Survey. arXiv 2024, arXiv:2412.13735. [Google Scholar] [CrossRef]
- Díez, Y.; Roure, F.; Lladó, X.; Salvi, J. A Qualitative Review on 3D Coarse Registration Methods. ACM Comput. Surv. 2015, 47, 1–36. [Google Scholar] [CrossRef]
- Pirotti, F.; Guarnieri, A.; Chiodini, S.; Bettanini, C. Automatic Coarse Co-Registration of Point Clouds from Diverse Scan Geometries: A Test of Detectors and Descriptors. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, X-1/W1-2023, 581–587. [Google Scholar] [CrossRef]
- Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U. Pairwise Coarse Registration of Point Clouds in Urban Scenes Using Voxel-Based 4-Planes Congruent Sets. ISPRS J. Photogramm. Remote Sens. 2019, 151, 106–123. [Google Scholar] [CrossRef]
- Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot 2015, 4, 1–104. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object Modeling by Registration of Multiple Range Images. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation Proceedings, Sacramento, CA, USA, 9–11 April 1991; Volume 3, pp. 2724–2729. [Google Scholar]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems V, Robotics: Science and Systems Foundation, Seattle, WA, USA, 28 June 2009. [Google Scholar]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11054–11059. [Google Scholar]
- Biber, P.; Strasser, W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Liu, H.; Zhang, Y.; Lei, L.; Xie, H.; Li, Y.; Sun, S. Hierarchical Optimization of 3D Point Cloud Registration. Sensors 2020, 20, 6999. [Google Scholar] [CrossRef]
- Cao, H.; Chen, D.; Zhang, Y.; Zhou, H.; Wen, D.; Cao, C. MFINet: A Multi-Scale Feature Interaction Network for Point Cloud Registration. Vis. Comput. 2025, 41, 4067–4079. [Google Scholar] [CrossRef]
- Guo, Y.; Sohel, F.; Bennamoun, M.; Wan, J.; Lu, M. An Accurate and Robust Range Image Registration Algorithm for 3D Object Modeling. IEEE Trans. Multimed. 2014, 16, 1377–1390. [Google Scholar] [CrossRef]
- Pomerleau, F.; Colas, F.; Siegwart, R.; Magnenat, S. Comparing ICP Variants on Real-World Data Sets. Auton. Robot. 2013, 34, 133–148. [Google Scholar] [CrossRef]
- Theiler, P.W.; Wegner, J.D.; Schindler, K. Keypoint-Based 4-Points Congruent Sets–Automated Marker-Less Registration of Laser Scans. ISPRS J. Photogramm. Remote Sens. 2014, 96, 149–163. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liang, F.; Liu, Y. Automatic Registration of Large-Scale Urban Scene Point Clouds Based on Semantic Feature Points. ISPRS J. Photogramm. Remote Sens. 2016, 113, 43–58. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, B.; Liang, F.; Huang, R.; Scherer, S. Hierarchical Registration of Unordered TLS Point Clouds Based on Binary Shape Context Descriptor. ISPRS J. Photogramm. Remote Sens. 2018, 144, 61–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Scaramuzza, D. A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7244–7251. [Google Scholar]
2011_10_03_drive_0027_sync | Parameters |
---|---|
Data Category | Residential |
LiDAR Sensor | Velodyne HDL-64E |
Number of Frames | 4550 |
Duration | 7 min 35 s |
Method | FPS | Translation [m] | Rotation [°] |
---|---|---|---|
Fast GICP(1.0 m) | 5.23 | 0.903 ± 0.430 | 0.758 ± 0.319 |
VGICP(0.5 m) | 9.31 | 4.463 ± 4.520 | 0.843 ± 0.363 |
VGICP(1.0 m) | 8.23 | 1.219 ± 0.908 | 0.872 ± 0.320 |
AR-VGICP | 7.96 | 1.106 ± 0.697 | 0.743 ± 0.309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Liu, Z.; Liu, H. Adaptive Resolution VGICP Algorithm for Robust and Efficient Point-Cloud Registration. Remote Sens. 2025, 17, 3056. https://doi.org/10.3390/rs17173056
Xia Y, Liu Z, Liu H. Adaptive Resolution VGICP Algorithm for Robust and Efficient Point-Cloud Registration. Remote Sensing. 2025; 17(17):3056. https://doi.org/10.3390/rs17173056
Chicago/Turabian StyleXia, Yuanping, Zhibo Liu, and Hua Liu. 2025. "Adaptive Resolution VGICP Algorithm for Robust and Efficient Point-Cloud Registration" Remote Sensing 17, no. 17: 3056. https://doi.org/10.3390/rs17173056
APA StyleXia, Y., Liu, Z., & Liu, H. (2025). Adaptive Resolution VGICP Algorithm for Robust and Efficient Point-Cloud Registration. Remote Sensing, 17(17), 3056. https://doi.org/10.3390/rs17173056