Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar
Abstract
Highlights
- Low-earth-orbit (LEO) internet satellite constellations can be utilized as illuminators of opportunity in passive radars. The fast-moving platform results in complicated clutter properties. Clutter property and suppression algorithms are discussed in this paper.
- The clutter model for a low-earth-orbit satellite (Starlink is an example)-based passive radar is deduced and the properties of the clutter are analyzed.
- A Doppler-frequency-shifted normalized least mean square filter with its fast implementation method is proposed to suppress the clutter.
- The clutter in a Starlink satellite-based passive radar shows shifted and broadened Doppler properties, but they are estimable.
- The proposed Doppler-frequency-shifted normalized least mean square filter and its block version can suppress the clutter with acceptable performance and high computational efficiency.
Abstract
1. Introduction
2. Signal Model
2.1. Clutter Model
2.2. Reference Signal
2.3. Clutter Isorange Contours
2.4. Analysis of Clutter Doppler Frequency
3. Clutter Suppression and Target Detection
3.1. Traditional Clutter Suppression Methods
3.1.1. CLEAN Method
3.1.2. Normalized Least Mean Square Filtering and Block Least Mean Square Filtering
3.2. Proposed Adaptive Filtering
3.2.1. DFS-NLMS Filtering
3.2.2. DFS-BLMS Filtering
3.3. Identification and Removal of Clutter Residue
3.4. Moving Target Detection
4. Simulation Results
4.1. Clutter Simulation
4.2. Clutter Suppression Results
4.3. Target Detection Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLMS | Block Least Mean Square |
CAF | Cross-Ambiguity Function |
CSR | Clutter Suppression Ratio |
DVB-S | Digital Video Broadcast-Satellite |
DVB-T | Digital Video Broadcast-Terrestrial |
ECA | Extensive Suppression Algorithm |
DFS-BLMS | Doppler Frequency Shifted BLMS |
DFS-NMLS | Doppler Frequency Shifted NLMS |
GEO | Geostationary Earth Orbit |
GNSS | Global Navigation Satellite Systems |
LEO | Low-Earth-Orbit |
LMS | Least Mean Square |
LS | Least Square |
NLMS | Normalized Least Mean Square |
RLS | Recursive Least Squares |
STAP | Space-Time Adaptive |
SNR | Signal-to-noise Ratios |
References
- Howland, P.; Maksimiuk, D.; Reitsma, G. FM radio based bistatic radar. IEE Proc. Radar Sonar Navig. 2005, 152, 107–115. [Google Scholar] [CrossRef]
- Palmer, J.E.; Harms, H.A.; Searle, S.J.; Davis, L. DVB-T Passive Radar Signal Processing. IEEE Trans. Signal Process. 2013, 61, 2116–2126. [Google Scholar] [CrossRef]
- Samczyński, P.; Abratkiewicz, K.; Płotka, M.; Zieliński, T.P.; Wszołek, J.; Hausman, S.; Korbel, P.; Ksiȩżyk, A. 5G network-based passive radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Colone, F.; Falcone, P.; Bongioanni, C.; Lombardo, P. WiFi-based passive bistatic radar: Data processing schemes and Experimental results. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1061–1079. [Google Scholar] [CrossRef]
- Colone, F.; Filippini, F.; Pastina, D. Passive Radar: Past, Present, and Future Challenges. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 54–69. [Google Scholar] [CrossRef]
- Suberviola, I.; Mayordomo, I.; Mendizabal, J. Experimental Results of air target Detection with a GPS forward-scattering radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 47–51. [Google Scholar] [CrossRef]
- Pastina, D.; Santi, F.; Pieralice, F.; Antoniou, M.; Cherniakov, M. Passive radar imaging of ship targets with GNSS signals of opportunity. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2627–2642. [Google Scholar] [CrossRef]
- Filippini, F.; Cabrera, O.; Bongioanni, C.; Colone, F.; Lombardo, P. DVB-S based passive radar for short range security application. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 7–14 May 2021. [Google Scholar]
- Pisciottano, I.; Santi, F.; Pastina, D.; Cristallini, D. DVB-S based passive polarimetric ISAR—Methods and experimental validation. IEEE Sens. J. 2021, 21, 6056–6070. [Google Scholar] [CrossRef]
- Hristov, S.; Lyu, X.; Daniel, L.; De Luca, A.; Stove, A.; Cherniakov, M.; Gashinova, M. Ship detection using Inmarsat BGAN signals. In Proceedings of the International Conference on Radar Systems, Belfast, UK, 23–26 October 2017. [Google Scholar]
- Khalife, J.; Neinavaie, M.; Kassas, Z.Z. The first Carrier Phase Tracking and Positioning results with starlink LEO Satellite Signals. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 1487–1491. [Google Scholar] [CrossRef]
- Neinavaie, M.; Khalife, J.; Kassas, Z.M. Acquisition, Doppler tracking, and positioning with Starlink LEO Satellites: First results. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2606–2610. [Google Scholar] [CrossRef]
- Sayin, A.; Cherniakov, M.; Antoniou, M. Passive radar using Starlink transmissions: A theoretical study. In Proceedings of the International Radar Symposium, Ulm, Germany, 26–28 June 2019. [Google Scholar]
- Blazquez-Garcia, R.; Ummenhofer, M.; Cristallini, D.; O’HAgan, D. Passive Radar architecture based on Broadband LEO Communication Satellite Constellations. In Proceedings of the IEEE Radar Conference, New York, NY, USA, 21–25 March 2022. [Google Scholar]
- Gomez-Del-Hoyo, P.; Samczynski, P.; Michalak, F. Analysis of Starlink Users’ downlink for passive radar applications: Signal characteristics and ambiguity function performance. In Proceedings of the IEEE Radar Conference, San Antonio, TX, USA, 1–5 May 2023. [Google Scholar]
- Blázquez-García, R.; Cristallini, D.; Ummenhofer, M.; Seidel, V.; Heckenbach, J.; O’HAgan, D. Experimental comparison of Starlink and oneWeb signals for passive radar. In Proceedings of the IEEE Radar Conference, San Antonio, TX, USA, 1–5 May 2023. [Google Scholar]
- Zhang, M.; Cheng, S.; Zheng, H. Feasibility of Starlink Transmissions for passive airborne Targets detection. In Proceedings of the International Conference on Information Communication and Signal Processing, Shenzhen, China, 16–18 September 2022. [Google Scholar]
- Zhu, H.; Zhou, D.; Li, Z.; An, H.; Huang, C.; Zhou, Y.; Yang, J. Moving target detection method for passive radar using LEO communication satellite constellation. In Proceedings of the IGARSS, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Blázquez-García, R.; Cristallini, D.; Seidel, V.; Heckenbach, J.; Slavov, A.; O’HAgan, D. Experimental acquisition of starlink satellite transmissions for passive radar applications. In Proceedings of the International Conference on Radar Systems, Edinburgh, UK, 24–27 October 2022. [Google Scholar]
- Gomez-Del-Hoyo, P.; Gronowski, K.; Samczynski, P. The starlink-based passive radar: Preliminary study and first illuminator signal measurements. In Proceedings of the 23rd International Radar Symposium, Gdańsk, Poland, 12–14 September 2022. [Google Scholar]
- Gomez-Del-Hoyo, P.; Samczynski, P. Digital steerable antenna control system for IoO tracking in Starlink based Passive Radar applications. In Proceedings of the International Radar Symposium, Berlin, Germany, 24–26 May 2023. [Google Scholar]
- Zuo, L.; Li, N.; Tan, J.; Peng, X.; Cao, Y.; Zhou, Z.; Han, J. A coherent integration method for moving target detection in frequency agile signal-based passive bistatic radar. Remote Sens. 2024, 16, 1148. [Google Scholar] [CrossRef]
- Chu, T.; Zhou, H.; Ren, Z.; Ye, Y.; Wang, C.; Zhou, F. Intelligent detection of low-slow-small targets based on passive radar. Remote Sens. 2025, 17, 961. [Google Scholar] [CrossRef]
- Xu, D.J.; Lv, D.Z.; Shen, F.; Shan, Z.M. A weak target Detection method for GPS based passive radar. In Proceedings of the 3rd International Conference on Advanced Computer Control (ICACC), Harbin, China, 18–20 January 2011. [Google Scholar]
- Feng, B.; Wang, T.; Liu, C.; Chen, C.; Chen, W. An effective CLEAN algorithm for Interference Cancellation and weak target detection in passive radar. In Proceedings of the Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013. [Google Scholar]
- Colone, F.; O’Hagan, D.W.; Lombardo, P.; Baker, C.J. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 698–722. [Google Scholar] [CrossRef]
- Fry, R.D.; Gray, D. Clean deconvolution for sidelobe suppression in random noise radar. In Proceedings of the International Conference On Radar, Adelaide, SA, Australia, 2–5 September 2008. [Google Scholar]
- Malanowski, M. Comparison of Adaptive Methods for Clutter Removal in PCL Radar. In Proceedings of the International Radar Symposium, Krakow, Poland, 24–26 May 2006. [Google Scholar]
- Chitgarha, M.M.; Radmard, M.; Majd, M.N.; Nayebi, M.M. Adaptive filtering techniques in passive radar. In Proceedings of the International Radar Symposium, Dresden, Germany, 19–21 June 2013. [Google Scholar]
- Meller, M.; Tujaka, S. Processing of noise radar waveforms using block least mean squares algorithm. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 749–761. [Google Scholar] [CrossRef]
- Raout, J.; Santori, A.; Moreau, E. Space–time clutter rejection and target passive detection using the APES method. IET Signal Process. 2010, 4, 298–304. [Google Scholar] [CrossRef]
- Mahmood, Z.U.; Alam, M.; Jamil, K.; Elnamaky, M. On modeling and hardware implementation of space-time adaptive processing (STAP) for target detection in passive bi-static radar. In Proceedings of the 11th International Conference on Information Sciences, Signal Processing and Their Applications, Montreal, QC, Canada, 2–5 July 2012. [Google Scholar]
- Neyt, X.; Raout, J.; Kubica, M.; Kubica, V. Feasibility of STAP for passive GSM-based radar. In Proceedings of the IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006. [Google Scholar]
- Zhao, X.; Liu, P.; Wang, B.; Jin, Y. GPU-Accelerated Signal Processing for Passive Bistatic Radar. Remote Sens. 2023, 15, 5421. [Google Scholar] [CrossRef]
Parameters | Constellations | |||
---|---|---|---|---|
Shell 1 | Shell 2 | Shell 3 | Shell 4 | |
Orbital planes | 72 | 72 | 36 | 6/4 |
Satellite per plane | 22 | 22 | 20 | 58/43 |
Altitude | 550 km | 540 km | 570 km | 560 km |
Inclination |
Parameters | |
---|---|
Carrier frequency | 11.575 GHz |
Bandwidth | 250 MHz |
Sampling rate | 640 MHz |
Noise power | −119.9978 dBw |
Signal power of target 1 | −177.6624 dBw |
Velocity of target 1 | 300 m/s |
Signal power of target 2 | −172.8309 dBw |
Velocity of target 2 | 800 m/s |
Clutter power | −104.0425 dBw |
Baseline length | 550.16 km |
Integration time | 0.1 s |
Algorithm | CSR (dB) |
---|---|
CLEAN | 12.2171 dB |
NLMS | 14.0956 dB |
DFS-NLMS | 14.7003 dB |
BLMS | 13.8976 dB |
DFS-BLMS | 14.4358 dB |
Algorithm | Processing Time (s) |
---|---|
CLEAN | 55,765 |
NLMS | 4304.1 |
DFS-NLMS | 8510.1 |
BLMS | 13.8976 |
DFS-BLMS | 48.3641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Xu, Z.; Tang, X.; Li, G.; Song, X. Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar. Remote Sens. 2025, 17, 3096. https://doi.org/10.3390/rs17173096
Guan X, Xu Z, Tang X, Li G, Song X. Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar. Remote Sensing. 2025; 17(17):3096. https://doi.org/10.3390/rs17173096
Chicago/Turabian StyleGuan, Xin, Zhongqiu Xu, Xinyi Tang, Guangzuo Li, and Xueming Song. 2025. "Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar" Remote Sensing 17, no. 17: 3096. https://doi.org/10.3390/rs17173096
APA StyleGuan, X., Xu, Z., Tang, X., Li, G., & Song, X. (2025). Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar. Remote Sensing, 17(17), 3096. https://doi.org/10.3390/rs17173096