Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China
Abstract
Highlights
- Groundwater in the Shule River Basin declined persistently from 2003 to 2023 at −0.31 cm yr−1, with the most severe losses in the central and lower reaches.
- Natural variability explained most of the early depletion, but human activities became the dominant driver after 2016, closely linked to cropland expansion, urban growth and GDP.
- The intensifying role of human activities highlights the urgent need for adaptive water management in arid inland basins.
- The integrative framework combining GRACE, land surface models, and socio-economic data offers transferable insights for groundwater sustainability in other water-stressed regions.
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. GRACE Data
2.2.2. GLDAS NOAH Land Surface Data
2.2.3. Groundwater Monitoring Data
2.2.4. Other Data
3. Research Methods
3.1. Methods for Estimating Changes in Groundwater Storage
3.2. Trend Analysis Using Slope Estimation
3.3. Relative Contribution
3.4. Land Use Transition Matrix
4. Results
4.1. Reliability of Groundwater Storage Evolution
4.2. Temporal Variability in Groundwater Storage
4.3. Spatial Variation in Groundwater Storage
4.4. Attribution of Natural and Anthropogenic Contributions
4.5. Land Use Changes and Socioeconomic Drivers
4.6. Correlations with Environmental and Human Drivers
5. Discussion
5.1. Impacts of Human Activities and Climate Change on Groundwater Storage
5.2. Spatial Heterogeneity of Depletion and Localized High-Risk Zones
5.3. Recharge Inhibition and Overextraction Due to Land Use Change
5.4. Policy Implications and Sustainable Management Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5237. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, J.; de Graaf, I.E.M.; Weiler, M.; Stahl, K. Large-scale assessment of delayed groundwater responses to drought. Water Resour. Res. 2020, 56, e2019WR025441. [Google Scholar] [CrossRef]
- Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Mafuzur Rahaman, M.; Abrar Faiz, M.; Jehanzeb Masud Cheema, M. Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. J. Hydrol. 2022, 605, 127315. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, L.; Steffen, H.; Wu, P.; Jiang, L.; Shen, Q.; Li, Z.; Hayashi, M. GRACE-based estimates of groundwater variations over North America from 2002 to 2017. J. Geod. Geodyn. 2022, 13, 11–23. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2015, 9, 161–167. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Liu, M.; Pei, H.; Shen, Y. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. J. Hydrol. 2022, 612, 128156. [Google Scholar] [CrossRef]
- Liu, B.; Zou, X.; Yi, S.; Sneeuw, N.; Cai, J.; Li, J. Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sens. Environ. 2021, 263, 112559. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Li, Y.; Tang, Q.; Woolway, R.I.; Rosa, L.; Michalak, A.M. Decoupling of surface water storage from precipitation in global drylands due to anthropogenic activity. Nat. Water 2025, 3, 80–88. [Google Scholar] [CrossRef]
- Zheng, C.M.; Guo, Z.L. Plans to protect China’s depleted groundwater. Science 2022, 375, 827. [Google Scholar] [CrossRef]
- Chen, P.Y.; Ma, J.; Ma, X.Y.; Zhou, Y.; Duan, Z.; Wang, Y.; Li, J.S. Isotopic and hydrochemical insights into the groundwater characteristics along an arid to semihumid climate gradient in China. Hydrol. Process. 2024, 38, e15063. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Cheng, W.; Xi, H.; Sindikubwabo, C.; Si, J.; Zhao, C.; Yu, T.; Li, A.; Wu, T. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert. Ecol. Indicat. 2020, 119, 106843. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, Y.; Zhu, X.; Zhao, J.; Yang, Y.; Li, J. Variations of groundwater storage in different basins of China over recent decades. J. Hydrol. 2021, 598, 126282. [Google Scholar] [CrossRef]
- Jia, X.; Hou, D.; Wang, L.; O’Connor, D.; Luo, J. The development of groundwater research in the past 40 years: A burgeoning trend in groundwater depletion and sustainable management. J. Hydrol. 2020, 587, 125006. [Google Scholar] [CrossRef]
- Niu, J.; Zhu, X.G.; Parry, M.A.J.; Kang, S.; Du, T.; Tong, L.; Ding, R. Environmental burdens of groundwater extraction for irrigation over an inland river basin in Northwest China. J. Clean. Prod. 2019, 222, 182–192. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; De Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Cao, L.; Liu, X.Q.; Zhu, P.C.; Wang, L.F. The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years. Sustainability 2024, 16, 2527. [Google Scholar] [CrossRef]
- Sabzehee, F.; Amiri-Simkooei, A.R.; Iran-Pour, S.; Vishwakarma, B.D.; Kerachian, R. Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods. J. Environ. Manag. 2023, 330, 117180. [Google Scholar] [CrossRef]
- Nath, S.; Kirschke, S. Groundwater Monitoring through Citizen Science: A review of project designs and results. Groundwater 2023, 61, 481–493. [Google Scholar] [CrossRef]
- Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.-J.H.; Verhoef, A.; Van Loon, A.F.; Sulis, M.; et al. Global groundwater modeling and monitoring: Opportunities and challenges. Water Resour. Res. 2021, 57, e2020WR029500. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhang, X.; Chen, D. Response of groundwater storage and recharge in the Qaidam Basin (Tibetan plateau) to climate variations from 2002 to 2016. J. Geophys. Res. Atmos. 2019, 124, 9918–9934. [Google Scholar] [CrossRef]
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Hu, K.X.; Awange, J.L.; Kuhn, M.; Saleem, A. Spatio-temporal groundwater variations associated with climatic and anthropogenic impacts in South-West Western Australia. Sci. Total Environ. 2019, 696, 133599. [Google Scholar] [CrossRef]
- Lin, M.; Biswas, A.; Bennett, E.M. Socio-ecological determinants on spatiotemporal changes of groundwater in the Yellow River Basin, China. Sci. Total Environ. 2020, 731, 138725. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Li, J.; Ma, J. Evaluating the Dynamics of Groundwater Storage and Its Sustainability in the Loess Plateau: The Integrated Impacts of Climate Change and Human Activities. Remote Sens. 2024, 16, 4375. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, Q.; Xi, H.; Yin, X.; Sindikubwabo, C.; Habiyakare, T.; Chen, Y.; Zhao, X. Spatiotemporal variability and controlling factors of groundwater depletion in endorheic basins of Northwest China. J. Environ. Manag. 2023, 344, 118468. [Google Scholar] [CrossRef]
- Liu, Q.; Kuang, X.; Zhang, X. Long-term groundwater dynamics in arid regions. J. Hydrol. 2022, 598, 126267. [Google Scholar]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.P.; Wang, Y.; Gu, H.; Wang, F.; Pan, S. Influences of climatic variability and human activities on terrestrial water storage variations across the Yellow River basin in the recent decade. J. Hydrol. 2019, 579, 124218. [Google Scholar] [CrossRef]
- He, J.; Ma, J.Z.; Zhao, W.; Sun, S. Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China. Hydrogeol. J. 2015, 23, 1745–1759. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, L.; Eastoe, C.J.; Wang, N.; Dong, X. An isotope study of the Shule River Basin, Northwest China: Sources and groundwater residence time, sulfate sources and climate change. J. Hydrol. 2022, 612, 128043. [Google Scholar] [CrossRef]
- Li, Z.; He, B.; Xu, X. Hydrological effects of climate change and vegetation dynamics in the Shule River Basin, arid northwest China. Hydrol. Process. 2015, 29, 1578–1594. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, J.Z.; Gu, C.; Qi, S.; Zhu, G. Distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: An implication for water cycle and groundwater recharge. J. Arid. Land 2016, 8, 973–985. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhang, S.; Zhao, Q.; Jin, Z.; Qin, J.; Shangguan, D. Quantifying the response of runoff to glacier shrinkage and permafrost degradation in a typical cryospheric basin on the Tibetan Plateau. CATENA 2024, 242, 108124. [Google Scholar] [CrossRef]
- Huang, S.; Feng, Q.; Qi, J.; Lu, Z.; Gong, Z. Analyzing and discussing the water resources management in Shule River basin in Hexi Corridor. J. Glaciol. Geocryol. 2018, 40, 846–852. [Google Scholar] [CrossRef]
- Xie, C.; Liu, H.; Li, X.; Zhao, H.; Dong, X.; Ma, K.; Wang, N.; Zhao, L. Spatial characteristics of hydrochemistry and stable isotopes in river and groundwater, and runoff components in the Shule River Basin, Northeastern of Tibet Plateau. J. Environ. Manag. 2024, 349, 119512. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Feng, Q.; Liu, W.; Li, Z.; Wen, X.; Si, J.; Xi, H.; Guo, R.; Jia, B. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China. Hydrol. Process. 2015, 29, 4703–4718. [Google Scholar] [CrossRef]
- Ma, J.Z.; He, J.H.; Qi, S.; Zhu, G.F.; Zhao, W.; Edmunds, W.M.; Zhao, Y.P. Groundwater recharge and evolution in the Dunhuang Basin, Northwestern China. Appl. Geochem. 2013, 28, 19–31. [Google Scholar] [CrossRef]
- Meyer, B.; Tapponnier, P.; Metivier, F.; Bourjot, L.; Gaudemer, Y.; Peltzer, G.; Guo, S.M.; Chen, Z.T. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 1998, 135, 1–47. [Google Scholar] [CrossRef]
- Gansu Geology Survey. The Report and Map for Hydrogeological Survey in the Shula River Basin (1:200000); Gansu Science and Technology Press: Lanzhou, China, 1978. [Google Scholar]
- Wang, Y.J.; Qin, D.H. Inffuence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Change Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, S.; Li, J. Spatiotemporal Downscaling of GRACE Total Water Storage Using Land Surface Model Outputs. Remote Sens. 2021, 13, 900. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res.-Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K.; Yang, Z.; Sun, J.; Yin, W. Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, J.; Zhang, L.; Zeng, H.T.; Huang, Q. Human activities have exacerbated groundwater depletion in arid regions: A case study of the Hexi Corridor, China. J. Hydrol. Reg. Stud. 2025, 61, 102649. [Google Scholar] [CrossRef]
- Bai, X.; Li, W.; Lin, X.; Han, L.; Ming, D. Reconciling regional water diversion and urban growth policies to protect groundwater across a large urban region in China. J. Hydrol. 2022, 612, 128094. [Google Scholar] [CrossRef]
- Feng, K.; Cao, Y.; Du, E.; Zhou, Z.; Zhang, Y. Spatiotemporal Dynamics of Drought and the Ecohydrological Response in Central Asia. Remote Sens. 2025, 17, 166. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Y.; Wang, W.; Jiang, J.; Cai, M.; Xu, Y. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. J. Hydrol. 2021, 594, 125644. [Google Scholar] [CrossRef]
- Li, H.; Lu, Y.; Zheng, C.; Zhang, X.; Zhou, B.; Wu, J. Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: A case study in yaoba oasis, Northwest China. Water 2020, 12, 303. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Yang, G.; Yao, J.; Liao, N. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. J. Arid. Land 2021, 13, 581–598. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, X.; Qiao, Y. Analysis on impacts of hydro-climatic changes and human activities on available water changes in Central Asia. Sci. Total Environ. 2020, 737, 139779. [Google Scholar] [CrossRef]
- Ding, K.; Zhao, X.; Cheng, J.; Yu, Y.; Luo, Y.; Couchot, J.; Zheng, K.; Lin, Y.; Wang, Y. GRACE/ML-based analysis of the spatiotemporal variations of groundwater storage in Africa. J. Hydrol. 2025, 647, 132336. [Google Scholar] [CrossRef]
- Benaraba, N.; Touati, F.; Benyahia, S.; Yebdri, D. Jointly estimating recharge and groundwater withdrawals of the NWSAS by inverting GRACE/GRACE-FO gravity data. Hydrol. Sci. J. 2022, 67, 2215–2231. [Google Scholar] [CrossRef]
- Rateb, A.; Scanlon, B.R.; Pool, D.R.; Sun, A.; Zhang, Z.; Chen, J.; Clark, B.; Faunt, C.C.; Haugh, C.J.; Hill, M.; et al. Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resour. Res. 2020, 56, e2020WR027556. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ma, X.; Ma, J.; Zeng, H.; Huang, Q.; Wang, Y.; Zhou, Y.; Zhang, L. Discrepancy and estimates of groundwater recharge under different land use types on the Loess Plateau. J. Hydrol.-Reg. Stud. 2024, 53, 101793. [Google Scholar] [CrossRef]
- Güneralp, B.; Lwasa, S.; Masundire, H.; Parnell, S.; Seto, K.C. Urbanization in Africa: Challenges and opportunities for conservation. Environ. Res. Lett. 2015, 10, 095001. [Google Scholar] [CrossRef]
- Doost, Z.H.; Yaseen, Z.M. The impact of land use and land cover on groundwater fluctuations using remote sensing and geographical information system: Representative case study in Afghanistan. Environ. Dev. Sustain. 2023, 27, 9515–9538. [Google Scholar] [CrossRef]
- Warku, F.; Korme, T.; Wedajo, G.K.; Nedow, D. Impacts of land use/cover change and climate variability on groundwater recharge for upper Gibe watershed, Ethiopia. Sustain. Wat. Resour. Manag. 2021, 8, 2. [Google Scholar] [CrossRef]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Wu, L.Z.; Qian, C.; Shen, Y.L.; Sun, D.Y. Assessment and factor diagnosis of water resource vulnerability in arid inland river basin: A case study of shule river basin, China. Sustainability 2023, 15, 9052. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Sahbeni, G.; Huang, C.; Song, X.; Duan, H.; Nyiransengiyumva, C. Synergic effects of land-use management systems towards the reclamation of Aeolian desertiffed land in the Shiyang River Basin. Ecol. Indicat. 2022, 139, 108882. [Google Scholar] [CrossRef]
- Huang, F.; Chunyu, X.; Zhang, D.; Chen, X.; Ochoa, C.G. A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins. Sci. Total Environ. 2020, 709, 136155. [Google Scholar] [CrossRef]
- Zhao, W.; Ren, H.; Du, J.; Yang, R.; Yang, Q.; Liu, H. Thoughts and Suggestions on Oasis Ecological Construction and Agricultural Development in Hexi Corridor. Bull. Chin. Acad. Sci. 2023, 38, 424–434. [Google Scholar] [CrossRef]
Well | Location | Longitude | Latitude | Elevation/m | Monitoring Depth/m | Correlation/r |
---|---|---|---|---|---|---|
W1 | Zhonggou | 95.91 | 40.51 | 1199.12 | 35 | 0.54 |
W2 | Jiulian | 95.82 | 40.50 | 1181.32 | 35 | 0.69 |
W3 | Shuangta | 96.36 | 40.47 | 1339.35 | 15 | 0.74 |
W4 | Yinma | 97.01 | 40.43 | 1410.64 | 50 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Geng, Y.; Ma, J.; Zhao, H.; He, J.; Chen, J. Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China. Remote Sens. 2025, 17, 3188. https://doi.org/10.3390/rs17183188
Zhang L, Geng Y, Ma J, Zhao H, He J, Chen J. Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China. Remote Sensing. 2025; 17(18):3188. https://doi.org/10.3390/rs17183188
Chicago/Turabian StyleZhang, Li, Yuting Geng, Jinzhu Ma, Hanwen Zhao, Jiahua He, and Jiping Chen. 2025. "Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China" Remote Sensing 17, no. 18: 3188. https://doi.org/10.3390/rs17183188
APA StyleZhang, L., Geng, Y., Ma, J., Zhao, H., He, J., & Chen, J. (2025). Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China. Remote Sensing, 17(18), 3188. https://doi.org/10.3390/rs17183188