Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024
Abstract
Highlights
- O3 pollution in the SCB became more widespread but less intense.
- Shift from VOC-limited to NOx-limited O3 formation regimes observed across the SCB.
- Reduced NOx emissions contributed to lower extreme O3 levels.
Abstract
1. Introduction
2. Materials and Methods
2.1. Ozone Observation Data
2.2. Satellite HCHO and NO2 Data
2.3. CESM and Decomposition Method
2.4. Model Description and Configuration
2.5. Model Evaluation Metrics
3. Results
3.1. Long-Term Variation in Extreme O3 Pollution in Sichuan Basin
3.2. Spatiotemporal Variation in O3 Control Regimes
3.3. Model Simulation of Extreme O3 Pollution Events
3.3.1. Description of Extreme O3 Pollution Events
3.3.2. Model Evaluation
3.3.3. Impact of Emissions Variation on Extreme O3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AERO7 | three-mode Aerosol version 7 |
CAM-chem | Community Atmosphere Model with Chemistry |
CB6 | Carbon Bond version 6 |
CESM | Community Earth System Model (CESM) |
CMAQ | Community Multiscale Air Quality |
CNEMC | China National Environmental Monitoring Center |
FNR | HCHO to NO2 column concentrations ratio |
GFED | Global Fire Emissions Database |
HCHO | formaldehyde |
IPR | Integrated Process Rate |
IRR | Integrated Reaction Rate |
MEIC | Multi-resolution Emission Inventory for China |
MEGAN | Model for Emissions of Gases and Aerosols from Nature |
MEE | Ministry of Ecology and Environment |
MOZART-4 | Model for Ozone and Related chemical Tracers, version 4 |
NCEP FNL | National Center for Environmental Prediction’s final operational global analyses |
NOx | nitrogen oxides |
NO2 | nitrogen dioxide |
NMB | normalized mean bias |
NME | normalized mean error |
O3 | ozone |
OH | hydroxyl radicals |
OMI | Ozone Monitoring Instrument |
PA | Process Analysis |
PM | particulate matter |
QA4ECV | quality-controlled |
SCB | Sichuan Basin |
TROPOMI | TROPOspheric Monitoring Instrument |
VOCs | volatile organic compounds |
WRF | Weather Research & Forecasting |
References
- Anenberg, S.C.; West, J.J.; Fiore, A.M.; Jaffe, D.A.; Prather, M.J.; Bergmann, D.; Cuvelier, K.; Dentener, F.J.; Duncan, B.N.; Gauss, M.; et al. Intercontinental Impacts of Ozone Pollution on Human Mortality. Environ. Sci. Technol. 2009, 43, 6482–6487. [Google Scholar] [CrossRef]
- Dewan, S.; Lakhani, A. Impact of ozone pollution on crop yield, human health, and associated economic costs in the Indo-Gangetic plains. Sci. Total Environ. 2024, 945, 173820. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 27. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Xiao, Q.; Geng, G.; Xue, T.; Liu, S.; Cai, C.; He, K.; Zhang, Q. Tracking PM2.5 and O3 Pollution and the Related Health Burden in China 2013–2020. Environ. Sci. Technol. 2022, 56, 6922–6932. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Choi, Y.; Pouyaei, A.; Ghahremanloo, M.; Nelson, D.L. A comprehensive investigation of surface ozone pollution in China, 2015–2019: Separating the contributions from meteorology and precursor emissions. Atmos. Res. 2021, 257, 105599. [Google Scholar] [CrossRef]
- Wang, W.; Parrish, D.D.; Wang, S.; Bao, F.; Ni, R.; Li, X.; Yang, S.; Wang, H.; Cheng, Y.; Su, H. Long-term trend of ozone pollution in China during 2014–2020: Distinct seasonal and spatial characteristics and ozone sensitivity. Atmos. Chem. Phys. 2022, 22, 8935–8949. [Google Scholar] [CrossRef]
- Yan, D.; Jin, Z.; Zhou, Y.; Li, M.; Zhang, Z.; Wang, T.; Zhuang, B.; Li, S.; Xie, M. Anthropogenically and meteorologically modulated summertime ozone trends and their health implications since China’s clean air actions. Environ. Pollut. 2024, 343, 123234. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, G.; Cheng, J.; Liu, Y.; Xiao, Q.; Liu, L.; Shi, Q.; Tong, D.; He, K.; Zhang, Q. Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013–2020. Environ. Sci. Technol. 2023, 57, 8954–8964. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Tan, Z.; Lu, K.; Dong, H.; Hu, M.; Li, X.; Liu, Y.; Lu, S.; Shao, M.; Su, R.; Wang, H.; et al. Explicit diagnosis of the local ozone production rate and the ozone-NO(x)-VOC sensitivities. Sci. Bull. 2018, 63, 1067–1076. [Google Scholar] [CrossRef]
- Kirchner, F.; Jeanneret, F.; Clappier, A.; Krüger, B.; van den Bergh, H.; Calpini, B. Total VOC reactivity in the planetary boundary layer: 2. A new indicator for determining the sensitivity of the ozone production to VOC and NOx. J. Geophys. Res. Atmos. 2001, 106, 3095–3110. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Qiao, Y.; Liu, Y.; Wang, S.; Yang, X.; Wang, H.; Lu, Y.; Zhang, X.; Lei, Y. Drivers of 2013-2020 ozone trends in the Sichuan Basin, China: Impacts of meteorology and precursor emission changes. Environ. Pollut. 2022, 300, 118914. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hong, Y.; Lin, Y.; Xu, K.; Chen, G.; Liu, T.; Xu, L.; Li, M.; Fan, X.; Wang, H.; et al. Impacts of Synoptic Patterns and Meteorological Factors on Distribution Trends of Ozone in Southeast China During 2015–2020. J. Geophys. Res. Atmos. 2023, 128, e2022JD037961. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S. Formation mechanism of a severe air pollution event: A case study in the Sichuan Basin, Southwest China. Atmos. Environ. 2021, 246, 118135. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, T.; Sun, X.; Bai, Y.; Shu, Z.; Fu, W.; Lu, Z.; Wang, X. Ozone pollution aggravated by mountain-valley breeze over the western Sichuan Basin, Southwest China. Chemosphere 2024, 361, 142445. [Google Scholar] [CrossRef]
- Yang, X.; Wu, K.; Lu, Y.; Wang, S.; Qiao, Y.; Zhang, X.; Wang, Y.; Wang, H.; Liu, Z.; Liu, Y.; et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport. Environ. Pollut. 2021, 278, 116845. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, X.; Wu, K.; Mei, H.; De Smedt, I.; Wang, S.; Fan, J.; Lyu, S.; He, C. Long-term trends of ozone and precursors from 2013 to 2020 in a megacity (Chengdu), China: Evidence of changing emissions and chemistry. Atmos. Res. 2022, 278, 106309. [Google Scholar] [CrossRef]
- Ren, J.; Guo, F.; Xie, S. Diagnosing ozone–NOx–VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmos. Chem. Phys. 2022, 22, 15035–15047. [Google Scholar] [CrossRef]
- Wang, N.; Du, Y.; Chen, D.; Meng, H.; Chen, X.; Zhou, L.; Shi, G.; Zhan, Y.; Feng, M.; Li, W.; et al. Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather. Atmos. Chem. Phys. 2024, 24, 3029–3042. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambien Air Quality Standards. MEE: Beijing, China, 2012.
- GB 3095-2012; Revision of the Ambien Air Quality Standards. MEE: Beijing, China, 2018.
- Wang, W.; van der A, R.; Ding, J.; van Weele, M.; Cheng, T. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7253–7269. [Google Scholar] [CrossRef]
- Li, Y.; Yu, C.; Tao, J.; Lu, X.; Chen, L. Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data. Remote Sens. 2024, 16, 316. [Google Scholar] [CrossRef]
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Huib, V.; Johan de, V.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef]
- Kelly, C. OMI/Aura Formaldehyde (HCHO) Total Column Daily L3 Weighted Mean Global 0.1deg Lat/Lon Grid V003; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.H.G.M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651–6678. [Google Scholar] [CrossRef]
- van Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmos. Meas. Tech. 2022, 15, 2037–2060. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model. Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef]
- Kang, H.; Zhu, B.; van der A, R.J.; Zhu, C.; de Leeuw, G.; Hou, X.; Gao, J. Natural and anthropogenic contributions to long-term variations of SO2, NO2, CO, and AOD over East China. Atmos. Res. 2019, 215, 284–293. [Google Scholar] [CrossRef]
- NCEP. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids; NCEP: College Park, MD, USA, 2015. [Google Scholar] [CrossRef]
- Loikith, P.; Tian, B.; Guan, B.; Lee, H.; Kim, J.; Waliser, D.; Ferraro, R.; Wang, W.; Case, J.; Tian, Y.; et al. Sensitivity of CONUS Summer Rainfall to the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal Simulations. J. Hydrometeorol. 2017, 18, 1689–1706. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Randerson, J.T.; Van Der Werf, G.R.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S. Global Fire Emissions Database; Version 4.1 (GFEDv4); ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2017. [Google Scholar]
- Yang, X.; Wu, K.; Wang, H.; Liu, Y.; Gu, S.; Lu, Y.; Zhang, X.; Hu, Y.; Ou, Y.; Wang, S.; et al. Summertime ozone pollution in Sichuan Basin, China: Meteorological conditions, sources and process analysis. Atmos. Environ. 2020, 226, 117392. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 1: The complex and varying roles of meteorology. Atmos. Chem. Phys. 2020, 20, 6305–6321. [Google Scholar] [CrossRef]
- Li, L.; Ma, X.; Chen, D. Spatiotemporal Evolution Characteristics and Drivers of TROPOMI-Based Tropospheric HCHO Column Concentration in North China. Sustainability 2025, 17, 4386. [Google Scholar] [CrossRef]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.; Valin, L. Inferring Changes in Summertime Surface Ozone-NOx-VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhou, L.; Wang, C.; Liu, H.; Qiu, Y.; Shi, G.; Song, D.; Tan, Q.; Yang, F. Characteristics of ambient volatile organic compounds during spring O(3) pollution episode in Chengdu, China. J. Environ. Sci. 2022, 114, 115–125. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, L.; Chen, D.; Luo, L.; Xiao, K.; Chen, Y.; Liu, H.; Tan, Q.; Yang, F. Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China. Sci. Total Environ. 2023, 901, 166259. [Google Scholar] [CrossRef]
- Souri, A.H.; Johnson, M.S.; Wolfe, G.M.; Crawford, J.H.; Fried, A.; Wisthaler, A.; Brune, W.H.; Blake, D.R.; Weinheimer, A.J.; Verhoelst, T.; et al. Characterization of errors in satellite-based HCHO/NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties. Atmos. Chem. Phys. 2023, 23, 1963–1986. [Google Scholar] [CrossRef]
Year | Dominated Period | Mean Exceeded O3 (μg m−3) | Max O3 (μg m−3) | No. of Affected Cities |
---|---|---|---|---|
2015 | 27–29 April | 227 | 270 | 9 |
2016 | 23–25 August | 222 | 278 | 9 |
2017 | 10–12 July | 233 | 335 | 13 |
2018 | 15–16 May | 228 | 285 | 16 |
2019 | 15–18 August | 233 | 305 | 17 |
2020 | 26–28 August | 228 | 327 | 14 |
2021 | 30 July–3 August | 225 | 343 | 18 |
2022 | 5–8 July | 219 | 323 | 16 |
2023 | 15–18 July | 221 | 333 | 17 |
2024 | 20–23 August | 220 | 258 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Liu, B.; Hong, L.; Shi, J.; Lu, H.; Zhang, Y.; Guo, Z. Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024. Remote Sens. 2025, 17, 3238. https://doi.org/10.3390/rs17183238
Kang H, Liu B, Hong L, Shi J, Lu H, Zhang Y, Guo Z. Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024. Remote Sensing. 2025; 17(18):3238. https://doi.org/10.3390/rs17183238
Chicago/Turabian StyleKang, Hanqing, Bojun Liu, Lei Hong, Jingchuan Shi, Hua Lu, Ying Zhang, and Zhaobing Guo. 2025. "Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024" Remote Sensing 17, no. 18: 3238. https://doi.org/10.3390/rs17183238
APA StyleKang, H., Liu, B., Hong, L., Shi, J., Lu, H., Zhang, Y., & Guo, Z. (2025). Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024. Remote Sensing, 17(18), 3238. https://doi.org/10.3390/rs17183238