Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons
Abstract
Highlights
- A new algorithm estimates bottom contamination probability from Sentinel-2 MSI reflectance, enabling the detection of optically shallow coastal waters.
- A near-infrared/blue spectral ratio algorithm improves chlorophyll-a retrieval in optically shallow lagoons compared to traditional algorithms.
- A full processing chain was developed and validated for high-resolution remote-sensing of water quality in optically complex coastal lagoons.
- The method provides a robust framework for the operational monitoring of anthropogenically impacted lagoon systems using Sentinel-2 MSI.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
- Berre lagoon
- Thau lagoon
2.2. In-Situ Measurements
2.2.1. Laboratory [Chl-a] and [SPM] Analyses
2.2.2. Radiometric Measurements and Data Processing
- A spectral interpolation to 1 nm was performed to standardize the wavelength grid across all TRIOS instruments.
- A threshold filter was applied to the Lu/Ed ratio in the 800–950 nm range (<0.025 sr−1) to remove scans with foam or object contamination.
- Consecutive Rrs(550 nm) values were required to deviate by less than 10% to filter out temporal variability or erroneous measurements.
- The NIR similarity correction (NIR-SC) described in [58] was applied using the 780 and 870 nm bands to correct for residual skylight or sunglint contamination.
- Negative corrected spectra were then excluded by applying the condition Rrs(400–800 nm) > 0.
- The remaining spectra were averaged to derive a representative spectrum for each station.
2.3. Detection of Optically Shallow Waters (OSWs)
2.3.1. Simulations of OSWs and ODWs
- OSWs with high transparency and depths ranging from 1.5 to 7 m and three bottom types (hereafter referred as “sand”, “mud” and “seagrass”);
- ODWs with high transparency (hereafter referred as “deep”);
- Turbid waters (ODWs), characterized by high [SPM] and values (hereafter “turbid”);
- Phytoplankton bloom waters (ODWs), characterized by high [chl-a] and values (hereafter “blooms”).
2.3.2. Optically Shallow Water Probability Algorithm (OSWPA)
- The blue-to-green ratio RBG = Rrs(443)/Rrs(555), which is typically lower in OSWs due to the BC;
- The NIR-to-green ratio RNIRG = Rrs(705)/Rrs(555), which tends to increase in the presence of high phytoplankton biomass or turbidity.
2.4. Water Quality Retrieval Algorithms
2.5. Calibration and Validation
2.6. Satellite Data, Atmospheric Corrections and Matchups
2.6.1. Sentinel-2 MSI Data
2.6.2. Atmospheric Corrections
- ACOLITE_glint: a modified ACOLITE version that includes an extra sunglint correction step, improving reflectance retrieval under sunglint-affected conditions.
- POLYMER [84]: this algorithm models atmospheric, sunglint, and water contributions through a polynomial spectral optimization. It performs well in glint-contaminated scenes and is compatible with S2-MSI.
- GRS [85]: estimates sunglint from SWIR bands, where water-leaving radiance is negligible, then extrapolates glint contribution to the visible spectrum using the bidirectional reflectance distribution function.
- C2RCC [86]: uses neural networks trained on large simulated datasets to retrieve Rrs, while accounting for sunglint and adjacency effects.
2.6.3. Validation of Satellite-Derived Rrs(λ) and WQ Products
- Atmospheric Correction Validation (AC-VAL): 50 matchups with TRIOS and HYPERNETS Rrs data across Berre and Thau (Figure 1) were used to assess AC performance.
- Satellite-derived Water Quality Validation (SWQ-VAL): based on independent GIPREB and REPHY data. For [chl-a], 160 matchups were obtained (129 in Berre, 31 in Thau; 0.3–68 µg.L−1). No [chl-a] data was available for Bolmon. For [SPM], 129 matchups (0.6–19.8 mg.L−1) were collected in Berre only, as REPHY does not monitor [SPM] in Thau. SWQ-VAL was used to validate satellite-derived [chl-a] and [SPM].
3. Results
3.1. Evaluation of Atmospheric Corrections Performances
3.2. Optically Shallow Water Probability Algorithm (OSWPA)
3.3. Water Quality Retrieval Algorithms: Calibration and Validation
3.3.1. [Chl-a]
3.3.2. [SPM]
3.4. Validation and Intercomparaison of Satellite-Derived Water Quality Products
3.4.1. [Chl-a]
3.4.2. [SPM]
4. Discussion
4.1. Performance of Atmospheric Corrections
4.2. Detection of Bottom Contamination with OSWPA
4.3. Performance of [Chl-a] and [SPM] Retrieval Algorithms
4.4. Limitations and Perspectives
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| [chl-a] | Chlorophyll-a concentration |
| [SPM] | Suspended Particulate Matter concentration |
| AC | Atmospheric Correction |
| NIR | Near-infrared |
| OSWPA | Optically Shallow Water Probability Algorithm |
| BC | Bottom Contamination |
| WQ | Water Quality |
| WFD | Water Framework Directive |
| Rrs | remote-sensing reflectance |
| OSW | Optically Shallow Water |
| ODW | Optically Deep Water |
| OLI | Operational Land Imager |
| ETM+ | Enhanced Thematic Mapper Plus |
| S2-MSI | Sentinel-2 Multispectral Imager |
| GIPREB | Groupement d’Intérêt Public pour la Réhabilitation de l’Étang de Berre |
| REPHY | Réseau de Surveillance du Phytoplancton et de l’Hydrologie |
| OAC | Optically Active Constituant |
| CDOM | Colored Dissolved Organic Matter |
| IOP | Inherent Optical Property |
| POSWPA | Optically Shallow Water probability |
| β | Signed median bias |
| ε | Signed median absolute percentage error |
| R2 | Coefficient of determination |
| MAE | Mean Absolute Error |
| SWIR | Short-Wave Infrared |
| NIR-SC | Near-Infrared Similarity Correction |
| RMSE | Root Mean Square Error |
| DNNs | Deep Neural Networks |
| NIBEI | Near-Infrared Bottom Effect Index |
| SDI | Substratum Detectability Index |
| OLCI | Ocean and Land Color Instrument |
References
- Kjerfve, B. Coastal Lagoons. In Coastal Lagoon Processes; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 1–8. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M. Mediterranean Coastal Lagoons in an Ecosystem and Aquatic Resources Management Context. Phys. Chem. Earth Parts A/B/C 2011, 36, 160–166. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. In Coasts and Estuaries: The Future; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–276. ISBN 9780128140048. [Google Scholar]
- Cataudella, S.; Crosetti, D.; Massa, F. Mediterranean Coastal Lagoons: Sustainable Management and Interactions Among Aquaculture, Catpure Fisheries and The Environment. In Studies and Reviews General Fisheries Comission for the Mediterranean; FAO: Rome, Italy, 2015; Volume 95, pp. 1–278. [Google Scholar]
- Derolez, V.; Malet, N.; Fiandrino, A.; Lagarde, F.; Richard, M.; Ouisse, V.; Bec, B.; Aliaume, C. Fifty Years of Ecological Changes: Regime Shifts and Drivers in a Coastal Mediterranean Lagoon during Oligotrophication. Sci. Total Environ. 2020, 732, 139292. [Google Scholar] [CrossRef]
- Kennish, M.J.; Paerl, H.W. Coastal Lagoons: Critical Habitats of Environmental Change, 1st ed.; Kennish, M.J., Hans, P.W., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I.; et al. Assessing, Quantifying and Valuing the Ecosystem Services of Coastal Lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Pérez-Marcos, M. Coastal Lagoons: “Transitional Ecosystems” between Transitional and Coastal Waters. J. Coast. Conserv. 2011, 15, 369–392. [Google Scholar] [CrossRef]
- Derolez, V.; Soudant, D.; Malet, N.; Chiantella, C.; Richard, M.; Abadie, E.; Aliaume, C.; Bec, B. Two Decades of Oligotrophication: Evidence for a Phytoplankton Community Shift in the Coastal Lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 2020, 241, 106810. [Google Scholar] [CrossRef]
- Le Ray, J.; Bec, B.; Fiandrino, A.; Lagarde, F.; Cimiterra, N.; Raimbault, P.; Roque, C.; Rigaud, S.; Régis, J.; Mostajir, B.; et al. Impact of Anoxia and Oyster Mortality on Nutrient and Microbial Planktonic Components: A Mesocosm Study. Aquaculture 2023, 566, 739171. [Google Scholar] [CrossRef]
- Herlory, O.; Briand, M.J.; Bouchoucha, M.; Derolez, V.; Munaron, D.; Cimiterra, N.; Tomasino, C.; Gonzalez, J.-L.; Giraud, A.; Boissery, P. Directive Cadre Sur l’Eau Bassin Rhône Méditerranée Corse—Année 2021; Ifremer: Brest, France, 2022; pp. 1–89. [Google Scholar] [CrossRef]
- Derolez, V.; Bec, B.; Cimiterra, N.; Foucault, E.; Messiaen, G.; Fiandrino, A.; Malet, N.; Munaron, D.; Serais, O.; Connes, C.; et al. OBSLAG 2020—Volet Eutrophisation Lagunes Méditerranéennes (Période 2015–2020). Etat DCE de La Colonne d’eau et Du Phytoplancton, Tendance et Variabilité Des Indicateurs; Ifremer: Brest, France, 2021; pp. 1–78. Available online: https://archimer.ifremer.fr/doc/00696/80768/ (accessed on 14 July 2025).
- Grillas, P.; Ximénès, M.-C.; Giraud, O.A. Adaptation Des Grilles DCE de Qualité Nutriments et Phytoplancton (Abondance et Biomasse) Pour Les Lagunes Oligo et Mésohalines; Ifremer: Brest, France, 2016; pp. 1–42. Available online: https://archimer.ifremer.fr/doc/00357/46818/ (accessed on 14 July 2025).
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and Perspectives. Surv. Geophys. 2019, 40, 401–429. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing Remotely Sensed Chlorophyll-a for the Implementation of the Water Framework Directive in European Perialpine Lakes. Sci. Total Environ. 2011, 409, 3083–3091. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. Modelling of Greek Lakes Water Quality Using Earth Observation in the Framework of the Water Framework Directive (WFD). Remote Sens. 2022, 14, 739. [Google Scholar] [CrossRef]
- Papathanasopoulou, E.; Simis, S.; Alikas, K.; Ansper, A.; Anttila, J.; Barillé, A.; Barillé, L.; Brando, V.; Bresciani, M.; Bučas, M.; et al. Satellite-Assisted Monitoring of Water Quality to Support the Implementation of the Water Framework Directive; Plymouth Marine Laboratory: Plymouth, UK, 2019. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef]
- Antoine, D.; Andrt, J.M.; Morel, A. Oceanic Primary Production: 2. Estimation at Global Scale from Satellite (Coastal Zone Color Scanner) Chlorophyll. Glob. Biogeochem. Cycles 1996, 10, 57–69. [Google Scholar] [CrossRef]
- Gordon, H.R.; Clark, D.K.; Mueller, J.L.; Hovis, W.A. Phytoplankton Pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with Surface Measurements. Science 1980, 210, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color1. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Braga, C.Z.F.; Vianna, M.L.; Kjerfve, B. Environmental Characterization of a Hypersaline Coastal Lagoon from Landsat-5 Thematic Mapper Data. Int. J. Remote Sens. 2003, 24, 3219–3234. [Google Scholar] [CrossRef]
- Caballero, I.; Roca, M.; Santos-echeandía, J.; Bernárdez, P.; Navarro, G. Use of the Sentinel-2 and Landsat-8 Satellites for Water Quality Monitoring: An Early Warning Tool in the Mar Menor Coastal Lagoon. Remote Sens. 2022, 14, 2744. [Google Scholar] [CrossRef]
- Erena, M.; Domínguez, J.A.; Aguado-Giménez, F.; Soria, J.; García-Galiano, S. Monitoring Coastal Lagoon Water Quality through Remote Sensing: The Mar Menor as a Case Study. Water 2019, 11, 1468. [Google Scholar] [CrossRef]
- Markogianni, V.; Dimitriou, E.; Karaouzas, I. Water Quality Monitoring and Assessment of an Urban Mediterranean Lake Facilitated by Remote Sensing Applications. Environ. Monit. Assess. 2014, 186, 5009–5026. [Google Scholar] [CrossRef]
- Mortula, M.; Ali, T.; Bachir, A.; Elaksher, A.; Abouleish, M. Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis. Water 2020, 12, 1954. [Google Scholar] [CrossRef]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R.; Martínez, J.M.; Motta-Marques, D. Atmospheric and Sunglint Correction for Retrieving Chlorophyll-a in a Productive Tropical Estuarine-Lagoon System Using Sentinel-2 MSI Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Volpe, V.; Silvestri, S.; Marani, M. Remote Sensing Retrieval of Suspended Sediment Concentration in Shallow Waters. Remote Sens. Environ. 2011, 115, 44–54. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Moreno, J. Remote Sensing of Cyanobacterial Blooms in a Hypertrophic Lagoon (Albufera of València, Eastern Iberian Peninsula) Using Multitemporal Sentinel-2 Images. Sci. Total Environ. 2020, 698, 134305. [Google Scholar] [CrossRef]
- Molner, J.V.; Soria, J.M.; Pérez-González, R.; Sòria-Perpinyà, X. Measurement of Turbidity and Total Suspended Matter in the Albufera of Valencia Lagoon (Spain) Using Sentinel-2 Images. J. Mar. Sci. Eng. 2023, 11, 1894. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Miracle, M.R.; Soria, J.; Delegido, J.; Vicente, E. Remote Sensing Application for the Study of Rapid Flushing to Remediate Eutrophication in Shallow Lagoons (Albufera of Valencia). Hydrobiologia 2019, 829, 125–132. [Google Scholar] [CrossRef]
- Loisel, H.; Vantrepotte, V.; Jamet, C.; Ngoc Dat, D. Challenges and New Advances in Ocean Color Remote Sensing of Coastal Waters. In Topics in Oceanography; IntechOpen: London, UK, 2013; pp. 89–132. [Google Scholar]
- Ogashawara, I.; Mishra, D.R.; Gitelson, A.A. Remote Sensing of Inland Waters: Background and Current State-of-the-Art. In Bio-optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–24. ISBN 9780128046548. [Google Scholar]
- Sebastiá-Frasquet, M.T.; Aguilar-Maldonado, J.A.; Santamaría-Del-ángel, E.; Estornell, J. Sentinel 2 Analysis of Turbidity Patterns in a Coastal Lagoon. Remote Sens. 2019, 11, 2926. [Google Scholar] [CrossRef]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust Algorithm for Estimating Total Suspended Solids (TSS) in Inland and Nearshore Coastal Waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Moses, W.J.; Sterckx, S.; Montes, M.J.; De Keukelaere, L.; Knaeps, E. Atmospheric Correction for Inland Waters. In Bio-optical Modeling and Remote Sensing of Inland Waters; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 69–100. ISBN 9780128046548. [Google Scholar]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L. Estimating Chlorophyll a Concentrations from Remote-Sensing Reflectance in Optically Shallow Waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; van der Wal, D.; Pitarch, J.; Verhoef, W. The Impact of Sea Bottom Effects on the Retrieval of Water Constituent Concentrations from MERIS and OLCI Images in Shallow Tidal Waters Supported by Radiative Transfer Modeling. Remote Sens. Environ. 2020, 237, 111596. [Google Scholar] [CrossRef]
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote Sensing of Shallow Waters—A 50 Year Retrospective and Future Directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Lee, Z.; Casey, B.; Arnone, R.A.; Weidemann, A.D.; Parsons, R.; Montes, M.J.; Gao, B.-C.; Goode, W.; Davis, C.O.; Dye, J. Water and Bottom Properties of a Coastal Environment Derived from Hyperion Data Measured from the EO-1 Spacecraft Platform. J. Appl. Remote Sens. 2007, 1, 011502. [Google Scholar] [CrossRef]
- Albert, A.; Mobley, C.; Gordon, H.; Brown, O.; Evans, R.; Brown, J.; Smith, R.; Baker, K.; Clark, D. An Analytical Model for Subsurface Irradiance and Remote Sensing Reflectance in Deep and Shallow Case-2 Waters. Opt. Express 2003, 11, 2873–2890. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Richardson, G.; Foreman, N.; Knudby, A.; Wu, Y.; Lin, Y. Global Deep Learning Model for Delineation of Optically Shallow and Optically Deep Water in Sentinel-2 Imagery. Remote Sens. Environ. 2024, 311, 114302. [Google Scholar] [CrossRef]
- Bernard, G.; Boudouresque, C.F.; Picon, P. Long Term Changes in Zostera Meadows in the Berre Lagoon (Provence, Mediterranean Sea). Estuar. Coast. Shelf Sci. 2007, 73, 617–629. [Google Scholar] [CrossRef]
- Mayot, N.; De Lary, H.; Gisel, R. Rapport Du Suivi Écologique Du GIPREB: Observatoire Du Milieu 2023; GIPREB: Berre-l’Étang, France, 2024. [Google Scholar]
- Minghelli-Roman, A.; Laugier, T.; Polidori, L.; Mathieu, S.; Loubersac, L.; Gouton, P. Satellite Survey of Seasonal Trophic Status and Occasional Anoxic “malaïgue” Crises in the Thau Lagoon Using MERIS Images. Int. J. Remote Sens. 2011, 32, 909–923. [Google Scholar] [CrossRef]
- Ifremer; ODE/VIGIES; Coordination REPHY & Cellule Quadrige. Manuel Pour L’utilisation des Données REPHY. In Informations Destinées à Améliorer la Compréhension des Fichiers de Données REPHY Mis à Disposition des Scientifiques et du Public; Ifremer: Brest, France, 2017; Available online: https://archimer.ifremer.fr/doc/00409/52016/ (accessed on 14 July 2025).
- Lizotte, M.; Juhls, B.; Matsuoka, A.; Massicotte, P.; Mével, G.; Anikina, D.O.J.; Antonova, S.; Bécu, G.; Béguin, M.; Bélanger, S.; et al. Nunataryuk Field Campaigns: Understanding the Origin and Fate of Terrestrial Organic Matter in the Coastal Waters of the Mackenzie Delta Region. Earth Syst. Sci. Data 2023, 15, 1617–1653. [Google Scholar] [CrossRef]
- Ody, A.; Doxaran, D.; Verney, R.; Bourrin, F.; Morin, G.P.; Pairaud, I.; Gangloff, A. Ocean Color Remote Sensing of Suspended Sediments along a Continuum from Rivers to River Plumes: Concentration, Transport, Fluxes and Dynamics. Remote Sens. 2022, 14, 2026. [Google Scholar] [CrossRef]
- Ras, J.; Claustre, H.; Uitz, J. Spatial Variability of Phytoplankton Pigment Distributions in the Subtropical South Pacific Ocean: Comparison between in Situ and Predicted Data. Biogeosciences 2008, 5, 353–369. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Renosh, P.R.; Doxaran, D.; De Keukelaere, L.; Gossn, J.I. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.J.; Moore, G. Seaborne Measurements of near Infrared Water-Leaving Reflectance: The Similarity Spectrum for Turbid Waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef]
- Goyens, C.; Lavigne, H.; Dille, A.; Vervaeren, H. Using Hyperspectral Remote Sensing to Monitor Water Quality in Drinking Water Reservoirs. Remote Sens. 2022, 14, 5607. [Google Scholar] [CrossRef]
- Ruddick, K.; De Cauwer, V.; Van Mol, B. Use of the near Infrared Similarity Reflectance Spectrum for the Quality Control of Remote Sensing Data. In Proceedings of the Remote Sensing of the Coastal Oceanic Environment, SPIE, San Diego, CA, USA, 18 August 2005; Volume 5885, p. 588501. [Google Scholar]
- Arabi, B.; Moradi, M.; Zandler, H.; Samimi, C.; Verhoef, W. Developing a Novel Index for Detection of Optically Shallow Waters Using Multispectral Satellite Imagery and Radiative Transfer Modelling. Int. J. Remote Sens. 2024, 45, 4788–4819. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Confronting Turbidity, the Major Challenge for Satellite-Derived Coastal Bathymetry. Sci. Total Environ. 2023, 870, 161898. [Google Scholar] [CrossRef]
- Lee, C.B.; Traganos, D.; Reinartz, P. A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and DeepWaters in Sentinel-2 Images. Remote Sens. 2022, 14, 590. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef]
- Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A Physics Based Retrieval and Quality Assessment of Bathymetry from Suboptimal Hyperspectral Data. Remote Sens. Environ. 2009, 113, 755–770. [Google Scholar] [CrossRef]
- Giardino, C.; Candiani, G.; Bresciani, M.; Lee, Z.; Gagliano, S.; Pepe, M. BOMBER: A Tool for Estimating Water Quality and Bottom Properties from Remote Sensing Images. Comput. Geosci. 2012, 45, 313–318. [Google Scholar] [CrossRef]
- Lai, W.; Lee, Z.; Wang, J.; Wang, Y.; Garcia, R.; Zhang, H. A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements. J. Remote Sens. 2022, 2022, 9831947. [Google Scholar] [CrossRef]
- Fry, E.S.; Pope, R.M. Absorption Spectrum (380–700 Nm) of Pure Water. II. Integrating Cavity Measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Chylek, P.; Labrie, D.; Kou, L. Refractive Indices of Water and Ice in the 0.65- to 2.5-Μm Spectral Range. Appl. Opt. 1993, 32, 3531–3540. [Google Scholar] [CrossRef]
- Baker, K.S.; Smith, R.C. Optical Properties of the Clearest Natural Waters (200–800 Nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al. Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean Coastal Environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A Global Approach for Chlorophyll-a Retrieval across Optically Complex Inland Waters Based on Optical Water Types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll Algorithms for Ocean Color Sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A.; Bailey, W.; Franz, B.A.; Harding, L.W.; et al. Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters Using Red and near Infrared Bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Han, B.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Bryère, P.; Ouillon, S.; Dessailly, D.; Xing, Q.; Zhu, J. Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters. Remote Sens. 2016, 8, 211. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P.; Zhang, Y.; Giardino, C.; Li, L.; et al. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.H.; Ishizaka, J.; Yoo, S.; Kim, S.W.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical Ocean-Color Algorithms to Retrieve Chlorophyll-a, Total Suspended Matter, and Colored Dissolved Organic Matter Absorption Coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- Ondrusek, M.; Stengel, E.; Kinkade, C.S.; Vogel, R.L.; Keegstra, P.; Hunter, C.; Kim, C. The Development of a New Optical Total Suspended Matter Algorithm for the Chesapeake Bay. Remote Sens. Environ. 2012, 119, 243–254. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor For Users. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Müller-Wilm, U.; Louis, J.; Richter, R.; Gascon, F.; Niezette, M. Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results. In Proceedings of the ESA Living Planet Symposium; ESA Living Planet Symposium 2013, Edinburgh, UK, 9 September 2013. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Tavora, J.; Jiang, B.; Kiffney, T.; Bourdin, G.; Gray, P.C.; Carvalho, L.S.; Hesketh, G.; Schild, K.M.; Souza, L.F.; Brady, D.C.; et al. Recipes for the Derivation of Water Quality Parameters Using the High-Spatial-Resolution Data from Sensors on Board Sentinel-2A, Sentinel-2B, Landsat-5, Landsat-7, Landsat-8, and Landsat-9 Satellites. J. Remote Sens. 2023, 3, 0049. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.A. Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In ESA Living Planet Symposium; Ouwehand, L., Ed.; European Space Agency: Prague, Czech Republic, 2016; Volume 740, p. 54. [Google Scholar]
- Doron, M.; Bélanger, S.; Doxaran, D.; Babin, M. Spectral Variations in the Near-Infrared Ocean Reflectance. Remote Sens. Environ. 2011, 115, 1617–1631. [Google Scholar] [CrossRef]
- Maciel, D.; Novo, E.; de Carvalho, L.S.; Barbosa, C.; Júnior, R.F.; de Lucia Lobo, F. Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor Approach. Remote Sens. 2019, 11, 1744. [Google Scholar] [CrossRef]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef]
- Souza Martins, V.; Clemente Faria Barbosa, C.; Augusto Sander de Carvalho, L.; Schaffer Ferreira Jorge, D.; de Lucia Lobo, F.; Márcia Leão de Moraes Novo, E.; Zhang, Y.; Giardino, C.; Li, L.; Li, X.; et al. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef]
- Doxaran, D.; ElKilani, B.; Corizzi, A.; Goyens, C. Validation of Satellite-Derived Water-Leaving Reflectance in Contrasted French Coastal Waters Based on HYPERNETS Field Measurements. Front. Remote Sens. 2024, 4, 1290110. [Google Scholar] [CrossRef]
- Wu, Y.; Knudby, A.; Pahlevan, N.; Lapen, D.; Zeng, C. Sensor-Generic Adjacency-Effect Correction for Remote Sensing of Coastal and Inland Waters. Remote Sens. Environ. 2024, 315, 114433. [Google Scholar] [CrossRef]
- Castagna, A.; Vanhellemont, Q. A Generalized Physics-Based Correction for Adjacency Effects. Appl. Opt. 2025, 64, 2719–2743. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Retrieval of Nearshore Bathymetry from Sentinel-2A and 2B Satellites in South Florida Coastal Waters. Estuar. Coast. Shelf Sci. 2019, 226, 106277. [Google Scholar] [CrossRef]
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of Near-Shore Satellite Derived Bathymetry: Classification and Account of Five Decades of Coastal Bathymetry Research. J. Ocean Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P.; Meredith, A. Preliminary Assessment of Turbidity and Chlorophyll Impact on Bathymetry Derived from Sentinel-2A and Sentinel-3A Satellites in South Florida. Remote Sens. 2019, 11, 645. [Google Scholar] [CrossRef]
- Camara Lins, R.; Martinez, J.-M.; da Motta Marques, D.; Almir Cirilo, J.; Ruberto Fragoso, C., Jr.; Zhang, Y.; Giardino, C.; Li, L.; Mishra, D.R.; Thenkabail, P.S. Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Tran, M.D.; Vantrepotte, V.; Loisel, H.; Oliveira, E.N.; Tran, K.T.; Jorge, D.; Mériaux, X.; Paranhos, R. Band Ratios Combination for Estimating Chlorophyll-a from Sentinel-2 and Sentinel-3 in Coastal Waters. Remote Sens. 2023, 15, 1653. [Google Scholar] [CrossRef]
- Llodrà-Llabrés, J.; Martínez-López, J.; Postma, T.; Pérez-Martínez, C.; Alcaraz-Segura, D. Retrieving Water Chlorophyll-a Concentration in Inland Waters from Sentinel-2 Imagery: Review of Operability, Performance and Ways Forward. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103605. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of Chlorophyll-a Concentration in Case II Waters Using MODIS and MERIS Data—Successes and Challenges. Environ. Res. Lett. 2009, 4, 045005. [Google Scholar] [CrossRef]
- Tavora, J.; Boss, E.; Doxaran, D.; Hill, P. An Algorithm to Estimate Suspended Particulate Matter Concentrations and Associated Uncertainties from Remote Sensing Reflectance in Coastal Environments. Remote Sens. 2020, 12, 2172. [Google Scholar] [CrossRef]
- Mabit, R.; Araújo, C.A.S.; Singh, R.K.; Bélanger, S. Empirical Remote Sensing Algorithms to Retrieve SPM and CDOM in Québec Coastal Waters. Front. Remote Sens. 2022, 3, 834908. [Google Scholar] [CrossRef]
- Subirade, C.; Jamet, C.; Tran, M.D.; Vantrepotte, V.; Han, B. Evaluation of Twelve Algorithms to Estimate Suspended Particulate Matter from OLCI over Contrasted Coastal Waters. Opt. Express 2024, 32, 45719–45744. [Google Scholar] [CrossRef]
- Aleya, L.; Béjaoui, B.; Dhib, A.; Ziadi, B.; Fertouna-Bellekhal, M.; Helali, M.A.; Khedhri, I.; Oueslati, W.; Ennouri, R.; Yamashita, C.; et al. Chapter 10: Tunisia. In World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa, 2nd ed.; Academic Press (Elsevier): London, UK, 2018; pp. 261–282. [Google Scholar] [CrossRef]











| Name | Reference | Type | Wavelength (nm) | R | Expression |
|---|---|---|---|---|---|
| CHLOC3 | [71] | Empirical multiple bands | 443, 490, 555 (MBR) | ||
| CHLGILERSON | [72] | Semi-empirical band ratio | 665, 705 | ||
| CHLNDCI | [73] | Semi-empirical band ratio | 665, 705 | ||
| CHLNIRB | This study | Semi-empirical band ratio | 443, 705 |
| Name | Reference | Type | Wavelength (nm) | X | Expression |
|---|---|---|---|---|---|
| SPMSISWANTO | [77] | Empirical multiple bands | 490, 560, 665 | ||
| SPMONDRUSEK | [78] | Empirical unique band | 665 | ||
| SPMNECHAD | [76] | Semi-analytical | 560 | ||
| SPMNECHAD | [76] | Semi-analytical | 705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, S.; Bryère, P.; Gernez, P.; Renosh, P.R.; Doxaran, D. Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons. Remote Sens. 2025, 17, 3430. https://doi.org/10.3390/rs17203430
Martin S, Bryère P, Gernez P, Renosh PR, Doxaran D. Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons. Remote Sensing. 2025; 17(20):3430. https://doi.org/10.3390/rs17203430
Chicago/Turabian StyleMartin, Samuel, Philippe Bryère, Pierre Gernez, Pannimpullath Remanan Renosh, and David Doxaran. 2025. "Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons" Remote Sensing 17, no. 20: 3430. https://doi.org/10.3390/rs17203430
APA StyleMartin, S., Bryère, P., Gernez, P., Renosh, P. R., & Doxaran, D. (2025). Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons. Remote Sensing, 17(20), 3430. https://doi.org/10.3390/rs17203430

