Mapping of Fluvial Morphological Units from Sentinel-1 Data Using a Deep Learning Approach
Abstract
:1. Introduction
2. Study Area and Satellite Imagery Used
2.1. Study Area Overview
2.2. Sentinel-1 and Sentinel-2 Data
3. Proposed Method
- We created a manual ground truth (polygons shown in Figure 4) from the observation of Sentinel-2 data and the corresponding higher spatial resolution data (on the same day). These polygons were used to train the Random Forest model, for which the input was composed of the contemporary data from S1 and S2 (as shown in Figure 2);
- We trained a deep neural network starting from only the Sentinel-1 input data and, as a reference, the segmentation obtained from Random Forest (refer to Figure 5);
- We tested the trained deep neural network (see Figure 6).
- a novel deep learning architecture that means the U-Nets cascade;
- a three-terms loss function;
- a different segmentation map as reference, obtained by using the random forest algorithm;
- a case study that best matches the characteristics of the proposed solution.
3.1. Dataset Generation with Random Forest Model (Step I)
3.2. Deep Learning Architecture (Step II)
Training
3.3. Testing the Model with Classification Metrics (Step III)
4. Results
4.1. Numerical and Visual Results
4.2. Comparison with Literature Algorithms
4.3. Impact of Loss Terms
4.4. Ancillary Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghosh, K.G.; Mukhopadhyay, S. Introductory Chapter: Current Practice in Fluvial Geomorphology: Research Frontiers, Issues and Challenges. In Current Practice in Fluvial Geomorphology-Dynamics and Diversity; IntechOpen: London, UK, 2020. [Google Scholar]
- Poole, G.C. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. J. N. Am. Benthol. Soc. 2010, 29, 12–25. [Google Scholar] [CrossRef]
- Rinaldi, M.; Belletti, B.; Comiti, F.; Nardi, L.; Mao, L.; Bussettini, M. Sistema di rilevamento e classificazione delle Unità Morfologiche dei corsi d’acqua (SUM). Versione Aggiornata 2016. [Google Scholar]
- Belletti, B.; Rinaldi, M.; Bussettini, M.; Comiti, F.; Gurnell, A.M.; Mao, L.; Nardi, L.; Vezza, P. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology 2017, 283, 143–157. [Google Scholar] [CrossRef]
- Schumann, G.; Giustarini, L.; Tarpanelli, A.; Jarihani, B.; Martinis, S. Flood modeling and prediction using earth observation data. Surv. Geophys. 2023, 44, 1553–1578. [Google Scholar] [CrossRef]
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Gan, T.Y. Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal Landsat images. Quat. Int. 2012, 263, 148–161. [Google Scholar] [CrossRef]
- Spada, D.; Molinari, P.; Bertoldi, W.; Vitti, A.; Zolezzi, G. Multi-temporal image analysis for fluvial morphological characterization with application to Albanian rivers. ISPRS Int. J. Geo-Inf. 2018, 7, 314. [Google Scholar] [CrossRef]
- Cavallo, C.; Nones, M.; Papa, M.N.; Gargiulo, M.; Ruello, G. Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto Int. 2022, 37, 8579–8601. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Ruello, G. Characterization of the flow regime of temporary rivers using Sentinel-2 satellite data. In International Association for Hydro-Environment Engineering and Research (IAHR); Prof. Miguel Ortega-Sánchez, University of Granada: Granada, Spain, 2022; Volume 39, pp. 5413–5417. [Google Scholar]
- Rivas-Fandiño, P.; Acuña-Alonso, C.; Novo, A.; Pacheco, F.A.L.; Álvarez, X. Assessment of high spatial resolution satellite imagery for monitoring riparian vegetation: Riverine management in the smallholding. Environ. Monit. Assess. 2023, 195, 81. [Google Scholar] [CrossRef]
- Marchetti, G.; Bizzi, S.; Belletti, B.; Lastoria, B.; Comiti, F.; Carbonneau, P.E. Mapping riverbed sediment size from Sentinel-2 satellite data. Earth Surf. Process. Landforms 2022, 47, 2544–2559. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Belletti, B.; Micotti, M.; Lastoria, B.; Casaioli, M.; Mariani, S.; Marchetti, G.; Bizzi, S. UAV-based training for fully fuzzy classification of Sentinel-2 fluvial scenes. Earth Surf. Process. Landforms 2020, 45, 3120–3140. [Google Scholar] [CrossRef]
- Kryniecka, K.; Magnuszewski, A. Application of satellite sentinel-2 images to study alternate sandbars movement at Lower Vistula River (Poland). Remote Sens. 2021, 13, 1505. [Google Scholar] [CrossRef]
- Shahrood, A.J.; Menberu, M.W.; Darabi, H.; Rahmati, O.; Rossi, P.M.; Kløve, B.; Haghighi, A.T. RiMARS: An automated river morphodynamics analysis method based on remote sensing multispectral datasets. Sci. Total Environ. 2020, 719, 137336. [Google Scholar] [CrossRef] [PubMed]
- Seaton, D.; Dube, T.; Mazvimavi, D. Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa. ISPRS J. Photogramm. Remote Sens. 2020, 167, 375–384. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous monitoring of the flooding dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 datasets. Remote Sens. 2021, 13, 3525. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip. Rev. Water 2021, 8, e21496. [Google Scholar] [CrossRef]
- Rossi, D.; Zolezzi, G.; Bertoldi, W.; Vitti, A. Monitoring braided river-bed dynamics at the sub-event time scale using time series of Sentinel-1 SAR imagery. Remote Sens. 2023, 15, 3622. [Google Scholar] [CrossRef]
- Mitidieri, F.; Papa, M.N.; Amitrano, D.; Ruello, G. River morphology monitoring using multitemporal SAR data: Preliminary results. Eur. J. Remote Sens. 2016, 49, 889–898. [Google Scholar] [CrossRef]
- Barbouchi, M.; Abdelfattah, R.; Chokmani, K.; Aissa, N.B.; Mhammed, C.H. Sentinel 1 response to cereal leaf area index (LAI): Study case for central Tunisia. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7125–7128. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, F.; Wan, W.; Yu, H.; Sun, J.; Del Ser, J.; Elyan, E.; Hussain, A. Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead. Inf. Fusion 2023, 93, 227–242. [Google Scholar] [CrossRef]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. A CNN-based fusion method for super-resolution of Sentinel-2 data. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4713–4716. [Google Scholar]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2635. [Google Scholar] [CrossRef]
- Pal, M.K.; Rasmussen, T.M.; Abdolmaleki, M. Multiple Multi-Spectral Remote Sensing Data Fusion and Integration for Geological Mapping. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar]
- Wald, L. Data Fusion: Definitions and Architectures–Fusion of Images of Different Spatial Resolutions. In Les Presses de l’Ècole des Mines; Presses des MINES: Paris, France, 2002. [Google Scholar]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef]
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 19. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Entekhabi, D.; Alemohammad, S.H.; Konings, A.G. Integration of passive and active microwave data from SMAP, AMSR2 and Sentinel-1 for Soil Moisture monitoring. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5252–5255. [Google Scholar] [CrossRef]
- Sukawattanavijit, C.; Chen, J.; Zhang, H. GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 284–288. [Google Scholar] [CrossRef]
- Fan, M.; Ma, D.; Huang, X.; An, R. Adaptability Evaluation of the Spatiotemporal Fusion Model of Sentinel-2 and MODIS Data in a Typical Area of the Three-River Headwater Region. Sustainability 2023, 15, 8697. [Google Scholar] [CrossRef]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-based fusion method for feature extraction from sentinel data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping. Remote Sens. Appl. Soc. Environ. 2017, 8, 41–53. [Google Scholar] [CrossRef]
- Popescu, A.; Vaduva, C.; Faur, D.; Datcu, M. Enhanced Classification of Land Cover through Joint Analysis of Sentinel-1 and Sentinel-2 Data. In Proceedings of the ESA Living Planet Symp., Prague, Czech Republic, 9–13 May 2016; p. 9. [Google Scholar]
- Prodromou, M.; Theocharidis, C.; Fotiou, K.; Argyriou, A.; Polydorou, T.; Hadjimitsis, D.; Tzouvaras, M. Fusion of Sentinel-1 and Sentinel-2 satellite imagery to rapidly detect landslides through Google Earth Engine. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-12618. [Google Scholar]
- Ouyang, W.; Wang, X. Joint Deep Learning for Pedestrian Detection. In Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 2056–2063. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Gargiulo, M.; Dell’Aglio, D.A.; Iodice, A.; Riccio, D.; Ruello, G. Semantic Segmentation using Deep Learning: A case of study in Albufera Park, Valencia. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 134–138. [Google Scholar]
- Gargiulo, M.; Dell’Aglio, D.A.; Iodice, A.; Riccio, D.; Ruello, G. Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net. Sensors 2020, 20, 2969. [Google Scholar] [CrossRef] [PubMed]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Stoian, A.; Poulain, V.; Inglada, J.; Poughon, V.; Derksen, D. Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems. Remote Sens. 2019, 11, 1986. [Google Scholar] [CrossRef]
- Moore, R.; Hansen, M. Google Earth Engine: A new cloud-computing platform for global-scale earth observation data and analysis. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 4–8 December 2011; Volume 2011, p. IN43C-02. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Yang, X.; Pavelsky, T.M.; Allen, G.H.; Donchyts, G. RivWidthCloud: An automated Google Earth Engine algorithm for river width extraction from remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 2019, 17, 217–221. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Malenovskỳ, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Gaber, A.; Soliman, F.; Koch, M.; El-Baz, F. Using full-polarimetric SAR data to characterize the surface sediments in desert areas: A case study in El-Gallaba Plain, Egypt. Remote Sens. Environ. 2015, 162, 11–28. [Google Scholar] [CrossRef]
- Dirgahayu, D.; Parsa, I.M. Detection Phase Growth of Paddy Crop Using SAR Sentinel-1 Data. IOP Conf. Ser. Earth Environ. Sci. 2019, 280, 012020. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J. Calibration and validation plan for the l2a processor and products of the Sentinel-2 mission. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 1249–1255. [Google Scholar] [CrossRef]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning image restoration without clean data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Kamal, M.; Jamaluddin, I.; Parela, A.; Farda, N.M. Comparison of Google Earth Engine (GEE)-based machine learning classifiers for mangrove mapping. In Proceedings of the 40th Asian Conference Remote Sensing, ACRS, Daejeon, Republic of Korea, 14–18 October 2019; pp. 1–8. [Google Scholar]
- Jiang, L.; Wang, W.; Yang, X.; Xie, N.; Cheng, Y. Classification methods of remote sensing image based on decision tree technologies. In Proceedings of the Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010; Selected Papers, Part I 4. Springer: Berlin/Heidelberg, Germany, 2011; pp. 353–358. [Google Scholar]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Xia, X.; Kulis, B. W-net: A deep model for fully unsupervised image segmentation. arXiv 2017, arXiv:1711.08506. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Rahman, M.A.; Wang, Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 12–14 December 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 234–244. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Dalsasso, E.; Denis, L.; Tupin, F. SAR2SAR: A self-supervised despeckling algorithm for SAR images. J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 4321–4329. [Google Scholar] [CrossRef]
Characteristics | Sentinel-1A Data |
---|---|
Acquisition orbit | Descending |
Imaging mode | IW |
Imaging frequency | C-band ( GHz) |
Polarization | VV, VH |
Data Product | Level-1 GRDH |
Spatial Resolution | 10-m |
Spectral Bands (Bands Number) | Wavelength Range [μm] | Spatial Resolution [m] |
---|---|---|
Blue (2), Green (3), Red (4), and NIR (8) | 0.490–0.842 | 10 |
Vegetation Red Edge (5, 6, 7, 8A) and SWIR (11, 12) | 0.705–2.190 | 20 |
Coastal Aerosol (1), Water Vapour (9), and SWIR (10) | 0.443–1.375 | 60 |
Datasets | Year | S2 and S1 Date () | Considered Area | Data Type (Size) |
---|---|---|---|---|
RF Training | 2019 | 09-11 | Po | Polygons (80) |
RF Testing | 2018 | 12-10 | Po | Polygons (20) |
DL Training | 2018 | 09-16; 12-10 | Borgoforte | Patches |
2019 | 01-04; 01-09; 09-11 | (9.5k) | ||
DL Testing | 2018 | 09-16; 12-10 | Ostiglia | Patches |
2019 | 01-04; 09-11 | (500) |
Methods | S1 Data | S2 Data | Accuracy | Reference |
---|---|---|---|---|
RF | ✓ | 0.9171 | [56] | |
RF | ✓ | 0.9367 | [56] | |
CART | ✓ | ✓ | 0.9980 | [59] |
SVM | ✓ | ✓ | 0.9797 | [60] |
RF | ✓ | ✓ | 0.9991 | [56] |
Configurations | No. Input Bands | Description | Considered Times |
---|---|---|---|
C1 | 1 | 1 | |
C2 | 1 | 1 | |
C3 | 2 | 1 | |
C4 | 3 | 0, 1, 2 | |
C5 | 3 | 0, 1, 2 | |
CUN2Net | 6 | 0, 1, 2 |
F1-Score | Accuracy | |||
---|---|---|---|---|
Sediments | Vegetation | Water | ||
C1 | 0.3822 | 0.9833 | 0.8421 | 0.6839 |
C2 | 0.5094 | 0.9817 | 0.8459 | 0.6782 |
C3 | 0.5584 | 0.9811 | 0.8389 | 0.7078 |
C4 | 0.2735 | 0.9760 | 0.2221 | 0.5786 |
C5 | 0.5583 | 0.9849 | 0.7869 | 0.6432 |
CUN2Net | 0.7296 | 0.9842 | 0.8736 | 0.7866 |
F1-Score | Accuracy | |||
---|---|---|---|---|
Sediments | Vegetation | Water | ||
W-Net | 0.2065 | 0.9381 | 0.8381 | 0.5686 |
0.5578 | 0.9842 | 0.8014 | 0.6648 | |
CUN2Net | 0.7296 | 0.9842 | 0.8736 | 0.7866 |
F1-Score | Accuracy | ||||||
---|---|---|---|---|---|---|---|
Sediments | Vegetation | Water | |||||
✓ | 0.5030 | 0.9842 | 0.7473 | 0.6106 | |||
✓ | ✓ | 0.6385 | 0.9846 | 0.8570 | 0.7544 | ||
CUN2Net | ✓ | ✓ | ✓ | 0.7296 | 0.9842 | 0.8737 | 0.7866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargiulo, M.; Cavallo, C.; Papa, M.N. Mapping of Fluvial Morphological Units from Sentinel-1 Data Using a Deep Learning Approach. Remote Sens. 2025, 17, 366. https://doi.org/10.3390/rs17030366
Gargiulo M, Cavallo C, Papa MN. Mapping of Fluvial Morphological Units from Sentinel-1 Data Using a Deep Learning Approach. Remote Sensing. 2025; 17(3):366. https://doi.org/10.3390/rs17030366
Chicago/Turabian StyleGargiulo, Massimiliano, Carmela Cavallo, and Maria Nicolina Papa. 2025. "Mapping of Fluvial Morphological Units from Sentinel-1 Data Using a Deep Learning Approach" Remote Sensing 17, no. 3: 366. https://doi.org/10.3390/rs17030366
APA StyleGargiulo, M., Cavallo, C., & Papa, M. N. (2025). Mapping of Fluvial Morphological Units from Sentinel-1 Data Using a Deep Learning Approach. Remote Sensing, 17(3), 366. https://doi.org/10.3390/rs17030366