LocaLock: Enhancing Multi-Object Tracking in Satellite Videos via Local Feature Matching
Abstract
:1. Introduction
- (1)
- We introduce LocaLock, a versatile MOT framework that incorporates the local matching paradigm from SOT into the MOT task. By leveraging the local matching concept, LocaLock enhances the robustness and stability of MOT without the need to simultaneously run separate SOT and MOT methods.
- (2)
- We present the local cost volume module (LCV), which effectively derives objects’ current priors by leveraging appearance-based information, further bolstering the robustness of the tracking process.
- (3)
- We propose a motion flow module (MoF) designed to accumulate past temporal information for predicting current features, thereby enhancing robustness and temporal consistency in feature representation.
2. Preliminaries
2.1. Multi-Object Tracking (MOT)
2.2. Introducing SOT into MOT
3. Method
3.1. Overview
3.2. Local Cost Volume Module (LCV)
Algorithm 1 Pseudo-code for local cost volume module |
|
3.3. Motion Flow Module (MoF)
3.4. Fusion of Prior Mask and Current Feature
3.5. Training Loss
4. Experiments
4.1. Experiment Setting
4.1.1. Datasets
4.1.2. Evaluation Metrics
- MOTA is a measure of the overall accuracy of the tracking system. It is calculated as follows:
- IDF1 is a harmonic mean of ID precision and ID recall, providing a balanced measure of the accuracy of object identity assignments. It is calculated as follows:
- MOTP measures the average precision of the bounding box predictions. It is calculated as follows:
4.1.3. Implementation Details
4.2. Results
4.2.1. Quantitative Results
4.2.2. Visualization Results
4.3. Ablation Study
4.3.1. Component Analysis
4.3.2. Effect of Neighborhood Parameter D
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2544–2550. [Google Scholar]
- Montero, A.; Lang, J.; Laganière, R. Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of the International Conference Computer Vision Workshop, Santiago, Chile, 7–13 December 2015; pp. 587–594. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3074–3082. [Google Scholar]
- Danelljan, M.; Robinson, A.; Shahbaz Khan, F.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part V 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 472–488. [Google Scholar]
- Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646. [Google Scholar]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–16 October 2016; Proceedings, Part II 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 850–865. [Google Scholar]
- Nam, H.; Han, B. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302. [Google Scholar] [CrossRef]
- Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8126–8135. [Google Scholar]
- Yan, B.; Peng, H.; Fu, J.; Wang, D.; Lu, H. Learning spatio-temporal transformer for visual tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10448–10457. [Google Scholar]
- Cao, Z.; Fu, C.; Ye, J.; Li, B.; Li, Y. HiFT: Hierarchical Feature Transformer for Aerial Tracking. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 1–10. [Google Scholar]
- Cui, Y.; Jiang, C.; Wang, L.; Wu, G. Mixformer: End-to-end tracking with iterative mixed attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13608–13618. [Google Scholar]
- Zhang, J.; Zhang, X.; Huang, Z.; Cheng, X.; Feng, J.; Jiao, L. Bidirectional Multiple Object Tracking Based on Trajectory Criteria in Satellite Videos. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3464–3468. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. Bytetrack: Multi-object tracking by associating every detection box. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–21. [Google Scholar]
- Cao, J.; Pang, J.; Weng, X.; Khirodkar, R.; Kitani, K. Observation-centric sort: Rethinking sort for robust multi-object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9686–9696. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE international conference on image processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3645–3649. [Google Scholar]
- Bergmann, P.; Meinhardt, T.; Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 941–951. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Koltun, V.; Krähenbühl, P. Tracking objects as points. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 474–490. [Google Scholar]
- Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. Fairmot: On the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
- Pflugfelder, R.; Weissenfeld, A.; Wagner, J. Deep Vehicle Detection in Satellite Video. arXiv 2022, arXiv:2204.06828. [Google Scholar]
- Xiao, C.; Yin, Q.; Ying, X.; Li, R.; Wu, S.; Li, M.; Liu, L.; An, W.; Chen, Z. DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, D.; Jia, X.; Zhang, X.; Li, J.; Liang, Y.; Jiao, L. Cross-frame keypoint-based and spatial motion information-guided networks for moving vehicle detection and tracking in satellite videos. ISPRS J. Photogramm. Remote Sens. 2021, 177, 116–130. [Google Scholar] [CrossRef]
- Wu, J.; Su, X.; Yuan, Q.; Shen, H.; Zhang, L. Multivehicle Object Tracking in Satellite Video Enhanced by Slow Features and Motion Features. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–26. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Y.; Wu, S.; Xia, X.; Hu, Z.; Lan, D.; Liu, X. Pay Attention to Local Contrast Learning Networks for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Sommer, L.; Krüger, W.; Teutsch, M. Appearance and motion based persistent multiple object tracking in wide area motion imagery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3878–3888. [Google Scholar]
- Xiao, Y.; Yuan, Q.; He, J.; Zhang, Q.; Sun, J.; Su, X.; Wu, J.; Zhang, L. Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102731. [Google Scholar] [CrossRef]
- Chu, Q.; Ouyang, W.; Li, H.; Wang, X.; Liu, B.; Yu, N. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4836–4845. [Google Scholar]
- Breitenstein, M.D.; Reichlin, F.; Leibe, B.; Koller-Meier, E.; Van Gool, L. Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1820–1833. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Tang, M.; Chen, Y.; Zhu, G.; Wang, J.; Lu, H. Improving Multiple Object Tracking with Single Object Tracking. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2453–2462. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Z.; Zhou, X.; Li, B.; Hu, W. One More Check: Making “Fake Background” Be Tracked Again. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; pp. 1546–1554. [Google Scholar] [CrossRef]
- Chen, L.; Ai, H.; Zhuang, Z.; Shang, C. Real-Time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018. [Google Scholar] [CrossRef]
- Chu, P.; Fan, H.; Tan, C.C.; Ling, H. Online Multi-Object Tracking With Instance-Aware Tracker and Dynamic Model Refreshment. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Jung, I.; Son, J.; Baek, M.; Han, B. Real-time mdnet. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 83–98. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Bernardin, K.; Stiefelhagen, R. Evaluating multiple object tracking performance: The clear mot metrics. EURASIP J. Image Video Process. 2008, 2008, 246309. [Google Scholar] [CrossRef]
- Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016, arXiv:1603.00831. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Jonathon Luiten, A.H. TrackEval. 2020. Available online: https://github.com/JonathonLuiten/TrackEval (accessed on 1 July 2024).
- Yin, Q.; Hu, Q.; Liu, H.; Zhang, F.; Wang, Y.; Lin, Z.; An, W.; Guo, Y. Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bae, S.H.; Yoon, K.J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1218–1225. [Google Scholar]
- Ahmadi, S.A.; Ghorbanian, A.; Mohammadzadeh, A. Moving vehicle detection, tracking and traffic parameter estimation from a satellite video: A perspective on a smarter city. Int. J. Remote Sens. 2019, 40, 8379–8394. [Google Scholar] [CrossRef]
- Kong, L.; Yan, Z.; Zhang, Y.; Diao, W.; Zhu, Z.; Wang, L. CFTracker: Multi-Object Tracking with Cross-Frame Connections in Satellite Videos. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Aharon, N.; Orfaig, R.; Bobrovsky, B.Z. BoT-SORT: Robust associations multi-pedestrian tracking. arXiv 2022, arXiv:2206.14651. [Google Scholar]
- Yi, K.; Luo, K.; Luo, X.; Huang, J.; Wu, H.; Hu, R.; Hao, W. Ucmctrack: Multi-object tracking with uniform camera motion compensation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 6702–6710. [Google Scholar]
- Wang, Y.; Kitani, K.; Weng, X. Joint object detection and multi-object tracking with graph neural networks. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 13708–13715. [Google Scholar]
- Stanojevic, V.D.; Todorovic, B.T. BoostTrack: Boosting the similarity measure and detection confidence for improved multiple object tracking. Mach. Vis. Appl. 2024, 35, 1–15. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Z.; Song, Y.; Zhao, Y.; Su, F.; Gong, T.; Meng, H. Strongsort: Make deepsort great again. IEEE Trans. Multimed. 2023, 25, 8725–8737. [Google Scholar] [CrossRef]
- Morsali, M.M.; Sharifi, Z.; Fallah, F.; Hashembeiki, S.; Mohammadzade, H.; Shouraki, S.B. SFSORT: Scene Features-based Simple Online Real-Time Tracker. arXiv 2024, arXiv:2404.07553. [Google Scholar]
- Zhang, Y.; Wang, T.; Zhang, X. Motrv2: Bootstrapping end-to-end multi-object tracking by pretrained object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22056–22065. [Google Scholar]
- Cetintas, O.; Brasó, G.; Leal-Taixé, L. Unifying short and long-term tracking with graph hierarchies. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22877–22887. [Google Scholar]
- Chen, H.; Li, N.; Li, D.; Lv, J.; Zhao, W.; Zhang, R.; Xu, J. Multiple Object Tracking in Satellite Video With Graph-Based Multi-Clue Fusion Tracker. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5639914. [Google Scholar]
Method | MOTA↑ | MOTP↑ | IDF1↑ | MT↑ | PT↓ | ML↓ | FP | FN | FP + FN↓ | IDS↓ | FM↓ | FPS↑ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
* MMB + CMOT [45] | 22.8 | 9.5 | - | 38 | 111 | 494 | 0 | 71,638 | 71,638 | 89 | 111 | - |
DTTP [46] | 44.5 | 16.3 | - | 483 | 153 | 22 | 38,329 | 10,032 | 48,361 | 3090 | 1344 | - |
MMB + SORT [45] | 58.2 | 28.6 | - | 214 | 218 | 221 | 117 | 36,377 | 36,494 | 2275 | 2047 | - |
FairMOT [21] | 2.3 | 28.0 | - | 21 | 13 | 623 | 2073 | 83,258 | 85,331 | 52 | 205 | 7.9 |
CFTracker [47] | 57.6 | 58.9 | 64.8 | 519 | 92 | 47 | 27,423 | 11,327 | 38,750 | 576 | 772 | 7.8 |
DSFNet [23] | 61.1 | 50.5 | 75.7 | 549 | 90 | 19 | 28,991 | 6626 | 35617 | 455 | 1064 | 2.1 |
LocaLock (Ours) | 62.6 | 67.5 | 75.9 | 377 | 103 | 178 | 11,254 | 23,190 | 34,444 | 218 | 496 | 6.8 |
Method | Detector | MOTA↑ | IDF1↑ | IDP↑ | IDR↑ | MT↑ | ML↓ | FP | FN | FP + FN↓ | IDS↓ |
---|---|---|---|---|---|---|---|---|---|---|---|
Bot-YOLOv7 [48] | YOLOv7-X | 46.1 | 48.3 | 60.3 | 56.5 | 275 | 235 | 26,457 | 35,225 | 61,682 | 2971 |
UCMCTrack [49] | YOLOv7-X | 47.1 | 51.0 | 53.7 | 48.7 | 288 | 396 | 24,947 | 34,988 | 59,935 | 3519 |
OC-SORT [16] | YOLOv7-X | 48.8 | 58.7 | 61.5 | 56.2 | 466 | 129 | 25,620 | 35,316 | 60,936 | 578 |
GSDT [50] | DSFNet | 48.1 | 47.9 | 45.9 | 50.1 | 291 | 313 | 24,145 | 34,981 | 59,126 | 3128 |
BoostTrack [51] | Swin-b+Dino | 48.7 | 53.6 | 55.5 | 51.9 | 377 | 334 | 24,158 | 35,680 | 59,838 | 1696 |
StrongSORT [52] | Swin-b+Dino | 48.9 | 57.2 | 59.8 | 54.9 | 398 | 93 | 24,955 | 35,578 | 60,533 | 761 |
SFSORT [53] | Swin-b+Dino | 49.1 | 56.3 | 59.5 | 53.4 | 347 | 178 | 24,750 | 35,203 | 5,9953 | 1101 |
MOTRv2 [54] | Deform-DETR | 49.6 | 60.2 | 63.5 | 57.4 | 345 | 114 | 24,651 | 35,196 | 59,847 | 607 |
SUSHI [55] | Cascade-RCNN | 50.2 | 55.6 | 60.4 | 51.5 | 489 | 98 | 24,032 | 35,108 | 59,140 | 593 |
CFTracker [47] | - | 50.9 | 57.7 | 60.6 | 55.0 | 392 | 100 | 23,515 | 34,657 | 58,172 | 641 |
GMFTracker [56] | - | 52.3 | 61.7 | 66.9 | 57.3 | 499 | 84 | 23,466 | 33,231 | 56,697 | 517 |
LocaLock (Ours) | - | 56.91 | 72.8 | 78.2 | 68.2 | 345 | 187 | 13,909 | 25,845 | 39,754 | 207 |
LCV | Unified Loss | MoF | MOTA↑ | MOTP↑ | IDF1↑ | FM↓ | IDS↓ |
---|---|---|---|---|---|---|---|
✓ | - | - | 59.4 | 67.3 | 74.2 | 542 | 151 |
✓ | ✓ | - | 61.9 | 66.6 | 75.1 | 517 | 202 |
✓ | ✓ | ✓ | 62.6 | 67.5 | 75.9 | 496 | 218 |
YOLOX + SORT (baseline) | 56.5 | 66.7 | 74.0 | 880 | 220 |
D | MOTA↑ | MOTP↑ | IDF1↑ | FP | FN | FP + FN↓ | FM↓ | IDS↓ |
---|---|---|---|---|---|---|---|---|
3 | 61.4 | 68.1 | 75.7 | 11,251 | 24,368 | 35,619 | 507 | 141 |
5 | 61.9 | 66.6 | 75.1 | 10,472 | 24,642 | 35,114 | 517 | 202 |
7 | 59.4 | 66.0 | 74.9 | 17,975 | 19,395 | 37,370 | 769 | 256 |
D | Memory Usage (MB)↓ |
---|---|
3 | 8360 |
5 | 8450 |
7 | 8526 |
15 | 9242 |
31 | 13,980 |
127 | CUDA out of memory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Yan, Z.; Shi, H.; Zhang, T.; Wang, L. LocaLock: Enhancing Multi-Object Tracking in Satellite Videos via Local Feature Matching. Remote Sens. 2025, 17, 371. https://doi.org/10.3390/rs17030371
Kong L, Yan Z, Shi H, Zhang T, Wang L. LocaLock: Enhancing Multi-Object Tracking in Satellite Videos via Local Feature Matching. Remote Sensing. 2025; 17(3):371. https://doi.org/10.3390/rs17030371
Chicago/Turabian StyleKong, Lingyu, Zhiyuan Yan, Hanru Shi, Ting Zhang, and Lei Wang. 2025. "LocaLock: Enhancing Multi-Object Tracking in Satellite Videos via Local Feature Matching" Remote Sensing 17, no. 3: 371. https://doi.org/10.3390/rs17030371
APA StyleKong, L., Yan, Z., Shi, H., Zhang, T., & Wang, L. (2025). LocaLock: Enhancing Multi-Object Tracking in Satellite Videos via Local Feature Matching. Remote Sensing, 17(3), 371. https://doi.org/10.3390/rs17030371