Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. SAR Data (UAVSAR)
3.2. Optical Data
4. Methodology
4.1. Water Channel Network from SAR Coherence
4.2. Image Morphology to Derive Channel Bank Masks
4.3. Mapping Overbank Flow
5. Results
5.1. Water Channel Masks
5.2. Cross-Validation of the Water Channel Mask
5.3. Overbank Flow: Separating Atmospheric Phase Delay from Water-Level Phase
6. Discussion
6.1. Tidal Variations in Channel Flow
6.2. Tidal Variation in Overbank Flow
6.3. Exchange of Water from the Channel Network into the Wetland Interior
6.4. Use of InSAR Phase to Identify Small Channels
6.5. Limitations and Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M. High-Resolution Mapping of Losses and Gains of Earth’s Tidal Wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global Coastal Wetland Change under Sea-Level Rise and Related Stresses: The DIVA Wetland Change Model. Glob. Planet. Chang. 2016, 139, 15–30. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T. Future Response of Global Coastal Wetlands to Sea-Level Rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate Change: Protect the World’s Deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef]
- Diefenderfer, H.L.; Borde, A.B.; Cullinan, V.I. Floodplain Wetland Channel Planform, Cross-Sectional Morphology, and Sediment Characteristics Along an Estuarine to Tidal River Gradient. J. Geophys. Res. Earth Surf. 2021, 126, e2019JF005391. [Google Scholar] [CrossRef]
- van de Vijsel, R.C.; van Belzen, J.; Bouma, T.J.; van der Wal, D.; Borsje, B.W.; Temmerman, S.; Cornacchia, L.; Gourgue, O.; van de Koppel, J. Vegetation Controls on Channel Network Complexity in Coastal Wetlands. Nat. Commun. 2023, 14, 7158. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.C.; Middleton, B.A.; McInnes, R.J.; Everard, M.; Irvine, K.; van Dam, A.A.; Finlayson, C.M. Introduction to the Wetland Book 1: Wetland Structure and Function, Management, and Methods. In The Wetland Book: I: Structure and Function, Management, and Methods; Finlayson, C.M., Everard, M., Irvine, K., McInnes, R.J., Middleton, B.A., van Dam, A.A., Davidson, N.C., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2018; pp. 3–14. ISBN 978-90-481-9659-3. [Google Scholar]
- Ferreira, C.S.; Piedade, M.T.F.; de Oliveira Wittmann, A.; Franco, A.C. Plant Reproduction in the Central Amazonian Floodplains: Challenges and Adaptations. AoB Plants 2010, 2010, plq009. [Google Scholar] [CrossRef] [PubMed]
- NC Division of Water Quality. Identification Methods for the Origins of Intermittent and Perennial Streams; North Carolina Department of Environment and Natural Resources: Raleigh, NC, USA, 2005.
- Reed, D.J.; Spencer, T.; Murray, A.L.; French, J.R.; Leonard, L. Marsh Surface Sediment Deposition and the Role of Tidal Creeks: Implications for Created and Managed Coastal Marshes. J. Coast. Conserv. 1999, 5, 81–90. [Google Scholar] [CrossRef]
- Pethick, J.S. Long-Term Accretion Rates on Tidal Salt Marshes. SEPM J. Sediment. Res. 1981, 51, 571–577. [Google Scholar] [CrossRef]
- Jensen, D.; Simard, M.; Cavanaugh, K.; Sheng, Y.; Fichot, C.G.; Pavelsky, T.; Twilley, R. Improving the Transferability of Suspended Solid Estimation in Wetland and Deltaic Waters with an Empirical Hyperspectral Approach. Remote Sens. 2019, 11, 1629. [Google Scholar] [CrossRef]
- Törnqvist, T.E.; Cahoon, D.R.; Morris, J.T.; Day, J.W. Coastal Wetland Resilience, Accelerated Sea-Level Rise, and the Importance of Timescale. AGU Adv. 2021, 2, e2020AV000334. [Google Scholar] [CrossRef]
- Leibowitz, S.G.; Wigington, P.J., Jr.; Schofield, K.A.; Alexander, L.C.; Vanderhoof, M.K.; Golden, H.E. Connectivity of Streams And Wetlands to Downstream Waters: An Integrated Systems Framework. J. Am. Water Resour. Assoc. 2018, 54, 298–322. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, F.; Brown, I.; Castellazzi, P.; Espinosa, L.; Guittard, A.; Hong, S.-H.; Rivera-Monroy, V.H.; Wdowinski, S. Assessment of Hydrologic Connectivity in an Ungauged Wetland with InSAR Observations. Environ. Res. Lett. 2018, 13, 24003. [Google Scholar] [CrossRef]
- Hiatt, M.; Passalacqua, P. Hydrological Connectivity in River Deltas: The First-order Importance of Channel-island Exchange. Water Resour. Res. 2015, 51, 2264–2282. [Google Scholar] [CrossRef]
- Olliver, E.A.; Edmonds, D.A. Hydrological Connectivity Controls Magnitude and Distribution of Sediment Deposition Within the Deltaic Islands of Wax Lake Delta, LA, USA. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006136. [Google Scholar] [CrossRef]
- Fleischmann, A.; Siqueira, V.; Paris, A.; Collischonn, W.; Paiva, R.; Pontes, P.; Crétaux, J.-F.; Bergé-Nguyen, M.; Biancamaria, S.; Gosset, M.; et al. Modelling Hydrologic and Hydrodynamic Processes in Basins with Large Semi-Arid Wetlands. J. Hydrol. 2018, 561, 943–959. [Google Scholar] [CrossRef]
- Hermoso, V.; Kennard, M.J.; Linke, S. Integrating Multidirectional Connectivity Requirements in Systematic Conservation Planning for Freshwater Systems. Divers. Distrib. 2012, 18, 448–458. [Google Scholar] [CrossRef]
- Hübinger, C.; Fluet-Chouinard, E.; Hugelius, G.; Peña, F.J.; Jaramillo, F. Automating the Detection of Hydrological Barriers and Fragmentation in Wetlands Using Deep Learning and InSAR. Remote Sens. Environ. 2024, 311, 114314. [Google Scholar] [CrossRef]
- Cortese, L.; Donatelli, C.; Zhang, X.; Nghiem, J.A.; Simard, M.; Jones, C.E.; Denbina, M.; Fichot, C.G.; Harringmeyer, J.P.; Fagherazzi, S. Coupling Numerical Models of Deltaic Wetlands with AirSWOT, UAVSAR, and AVIRIS-NG Remote Sensing Data. Biogeosciences 2024, 21, 241–260. [Google Scholar] [CrossRef]
- Jung, H.C.; Jasinski, M.; Kim, J.; Shum, C.K.; Bates, P.; Neal, J.; Lee, H.; Alsdorf, D. Calibration of Two-dimensional Floodplain Modeling in the Central Atchafalaya Basin Floodway System Using SAR Interferometry. Water Resour. Res. 2012, 48, W07511. [Google Scholar] [CrossRef]
- Madricardo, F.; Foglini, F.; Kruss, A.; Ferrarin, C.; Pizzeghello, N.M.; Murri, C.; Rossi, M.; Bajo, M.; Bellafiore, D.; Campiani, E.; et al. High Resolution Multibeam and Hydrodynamic Datasets of Tidal Channels and Inlets of the Venice Lagoon. Sci. Data 2017, 4, 170121. [Google Scholar] [CrossRef]
- Wright, K.; Passalacqua, P.; Simard, M.; Jones, C.E. Integrating Connectivity Into Hydrodynamic Models: An Automated Open-Source Method to Refine an Unstructured Mesh Using Remote Sensing. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003025. [Google Scholar] [CrossRef]
- Yang, X.; Pavelsky, T.M.; Allen, G.H.; Donchyts, G. RivWidthCloud: An Automated Google Earth Engine Algorithm for River Width Extraction From Remotely Sensed Imagery. IEEE Geosci. Remote Sens. Lett. 2020, 17, 217–221. [Google Scholar] [CrossRef]
- Pashaei, M.; Kamangir, H.; Starek, M.J.; Tissot, P. Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over a Wetland. Remote Sens. 2020, 12, 959. [Google Scholar] [CrossRef]
- Langhorst, T.; Pavelsky, T. Global Observations of Riverbank Erosion and Accretion From Landsat Imagery. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006774. [Google Scholar] [CrossRef]
- Rapinel, S.; Panhelleux, L.; Gayet, G.; Vanacker, R.; Lemercier, B.; Laroche, B.; Chambaud, F.; Guelmami, A.; Hubert-Moy, L. National Wetland Mapping Using Remote-Sensing-Derived Environmental Variables, Archive Field Data, and Artificial Intelligence. Heliyon 2023, 9, e13482. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kong, Y. An Improved SAR Image Semantic Segmentation Deeplabv3+ Network Based on the Feature Post-Processing Module. Remote Sens. 2023, 15, 2153. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Melack, J.M.; Dunne, T.; Mertes, L.A.K.; Hess, L.L.; Smith, L.C. Interferometric Radar Measurements of Water Level Changes on the Amazon Flood Plain. Nature 2000, 404, 174–177. [Google Scholar] [CrossRef]
- Wdowinski, S.; Amelung, F.; Miralles-Wilhelm, F.; Dixon, T.H.; Carande, R. Space-Based Measurements of Sheet-Flow Characteristics in the Everglades Wetland, Florida. Geophys. Res. Lett. 2004, 31, L15503. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmuller, U. Multi-Temporal Synthetic Aperture Radar Metrics Applied to Map Open Water Bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [Google Scholar] [CrossRef]
- Uddin, K.; Matin, M.A.; Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sens 2019, 11, 1581. [Google Scholar] [CrossRef]
- Marzi, D.; Gamba, P. Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11789–11799. [Google Scholar] [CrossRef]
- Schmitt, M. Potential of Large-Scale Inland Water Body Mapping from Sentinel-1/2 Data on the Example of Bavaria’s Lakes and Rivers. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 271–289. [Google Scholar] [CrossRef]
- Hong, S.-H.; Wdowinski, S.; Kim, S.-W.; Won, J.-S. Multi-Temporal Monitoring of Wetland Water Levels in the Florida Everglades Using Interferometric Synthetic Aperture Radar (InSAR). Remote Sens. Environ. 2010, 114, 2436–2447. [Google Scholar] [CrossRef]
- Oliver-Cabrera, T.; Wdowinski, S. InSAR-Based Mapping of Tidal Inundation Extent and Amplitude in Louisiana Coastal Wetlands. Remote Sens. 2016, 8, 393. [Google Scholar] [CrossRef]
- Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R. Space-Based Detection of Wetlands’ Surface Water Level Changes from L-Band SAR Interferometry. Remote Sens. Environ. 2008, 112, 681–696. [Google Scholar] [CrossRef]
- Liao, T.-H.; Simard, M.; Denbina, M.; Lamb, M.P. Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series. Remote Sens. 2020, 12, 2351. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Aminjafari, S.; Yang, W.; Cui, B.; Yan, S.; Zhang, Y.; Zhu, J.; Jaramillo, F. Using InSAR to Identify Hydrological Connectivity and Barriers in a Highly Fragmented Wetland. Hydrol. Process 2020, 34, 4417–4430. [Google Scholar] [CrossRef]
- Coleman, J.M.; Roberts, H.H.; Stone, G.W. Mississippi River Delta: An Overview. J. Coast. Res. 1998, 14, 699–716. [Google Scholar]
- Blum, M.; Rahn, D.; Frederick, B.; Polanco, S. Land Loss in the Mississippi River Delta: Role of Subsidence, Global Sea-Level Rise, and Coupled Atmospheric and Oceanographic Processes. Glob. Planet. Change 2023, 222, 104048. [Google Scholar] [CrossRef]
- Craig, N.J.; Turner, R.E.; Day, J.W. Land Loss in Coastal Louisiana (USA). Environ. Manag. 1979, 3, 133–144. [Google Scholar] [CrossRef]
- CPRA. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; Coastal Protection and Restoration Authority of Louisiana: Baton Rouge, LA, USA, 2023.
- Dokka, R.K. The Role of Deep Processes in Late 20th Century Subsidence of New Orleans and Coastal Areas of Southern Louisiana and Mississippi. J. Geophys. Res. 2011, 116, B06403. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Toby, S.C.; Siverd, C.G.; Twilley, R.; Bentley, S.J.; Hagen, S.; Xu, K. Land Loss Due to Human-Altered Sediment Budget in the Mississippi River Delta. Nat. Sustain. 2023, 6, 644–651. [Google Scholar] [CrossRef]
- Jankowski, K.L.; Törnqvist, T.E.; Fernandes, A.M. Vulnerability of Louisiana’s Coastal Wetlands to Present-Day Rates of Relative Sea-Level Rise. Nat. Commun. 2017, 8, 14792. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.E.; An, K.; Blom, R.G.; Kent, J.D.; Ivins, E.R.; Bekaert, D. Anthropogenic and Geologic Influences on Subsidence in the Vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid. Earth 2016, 121, 3867–3887. [Google Scholar] [CrossRef]
- Yuill, B.; Lavoie, D.; Reed, D.J. Understanding Subsidence Processes in Coastal Louisiana. J. Coast. Res. 2009, 10054, 23–36. [Google Scholar] [CrossRef]
- Bourne, J. Louisiana’s Vanishing Wetlands: Going, going … . Science 2000, 289, 1860–1863. [Google Scholar] [CrossRef]
- Jensen, D.J.; Cavanaugh, K.C.; Thompson, D.R.; Fagherazzi, S.; Cortese, L.; Simard, M. Leveraging the Historical Landsat Catalog for a Remote Sensing Model of Wetland Accretion in Coastal Louisiana. J. Geophys. Res. Biogeosci 2022, 127, e2022JG006794. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Barras, J.A.; Steyer, G.D.; Sleavin, W.; Fischer, M.; Beck, H.; Trahan, N.; Griffin, B.; Heckman, D. Land Area Change in Coastal Louisiana from 1932 to 2010; Scientific Investigations Map; US Geological Survey Scientific Investigations Map 3164, Scale 1: 265,000; USGS Lafayette Publishing Service Center: Lafayette, LA, USA, 2011. Available online: https://pubs.usgs.gov/sim/3164/downloads/SIM3164_Pamphlet.pdf (accessed on 27 January 2024).
- Roberts, H.H.; DeLaune, R.D.; White, J.R.; Li, C.; Sasser, C.E.; Braud, D.; Weeks, E.; Khalil, S. Floods and Cold Front Passages: Impacts on Coastal Marshes in a River Diversion Setting (Wax Lake Delta Area, Louisiana). J. Coast. Res. 2015, 315, 1057–1068. [Google Scholar] [CrossRef]
- Styles, R.; Snedden, G.A.; Smith, S.J.; Bryant, D.B.; Boyd, B.M.; Gailani, J.Z.; Couvillion, B.; Race, E. Seasonal Controls on Sediment Delivery and Hydrodynamics in a Vegetated Tidally Influenced Interdistributary Island. J. Geophys. Res. Ocean. 2021, 126, e2020JC016146. [Google Scholar] [CrossRef]
- Jones, C.; Simard, M.; Lou, Y.; Oliver, T. Pre-Delta-X: L1 UAVSAR Single Look Complex and Interferograms, MRD, LA, USA, 2016; ORNL DAAC: Oak Ridge, TN, USA, 2021.
- Hensley, S.; Zebker, H.; Jones, C.; Michel, T.; Muellerschoen, R.; Chapman, B. First Deformation Results Using the NASA/JPL UAVSAR Instrument. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–30 October 2009. [Google Scholar]
- Oliver-Cabrera, T.; Jones, C.E.; Yunjun, Z.; Simard, M. InSAR Phase Unwrapping Error Correction for Rapid Repeat Measurements of Water Level Change in Wetlands. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the Swir Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Thompson, D.R.; Jensen, D.J.; Chapman, J.W.; Simard, M.; Greenberg, E. Delta-X: AVIRIS-NG L2B BRDF-Adjusted Surface Reflectance, MRD, LA, 2021, V2. ORNL DAAC: Oak Ridge, TN, USA, 2023. [Google Scholar] [CrossRef]
- Potter, C. Remote Sensing of Wetland Area Loss and Gain in the Western Barataria Basin (Louisiana, USA) since Hurricane Katrina. J. Coast. Res. 2021, 37, 953–963. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Zheng, Y.; Fattahi, H.; Agram, P.; Simons, M.; Rosen, P. On Closure Phase and Systematic Bias in Multilooked SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Contributors, scikit-image Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Wdowinski, S.; Hong, S.-H.; Mulcan, A.; Brisco, B. Remote-Sensing Monitoring of Tide Propagation Through Coastal Wetlands. Oceanography 2013, 26, 64–69. [Google Scholar] [CrossRef]
- Gray, A.L.; Mattar, K.E.; Sofko, G. Influence of Ionospheric Electron Density Fluctuations on Satellite Radar Interferometry. Geophys. Res. Lett. 2000, 27, 1451–1454. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Chen, C. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 1459–1463. [Google Scholar]
- Belhadj-Aissa, S.; Simard, M.; Jones, C.E.; Oliver-Cabrera, T.; Fayne, J. Separation of Water Level Change from Atmospheric Artifacts through Application of Independent Component Analysis to InSAR Time Series. Earth Space Sci. 2024, In Review. [Google Scholar] [CrossRef]
- Oliver-Cabrera, T.; Jones, C.; Simard, M.; Varugu, B.K.; Belhadj-Aissa, S. Identification of Wet Troposphere Delay in L-Band InSAR Measurements. Geodesy 2024, In Review. [Google Scholar]
- Cao, Y.; Jónsson, S.; Li, Z. Advanced InSAR Tropospheric Corrections From Global Atmospheric Models That Incorporate Spatial Stochastic Properties of the Troposphere. J. Geophys. Res. Solid. Earth 2021, 126, e2020JB020952. [Google Scholar] [CrossRef]
- Hanssen, R.F.; Weckwerth, T.M.; Zebker, H.A.; Klees, R. High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. Science 1999, 283, 1297–1299. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.-P.; Peltzer, G. Systematic InSAR Tropospheric Phase Delay Corrections from Global Meteorological Reanalysis Data. Geophys. Res. Lett. 2011, 38, L17311. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR Bias and Uncertainty Due to the Systematic and Stochastic Tropospheric Delay. J. Geophys. Res. Solid. Earth 2015, 120, 8758–8773. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, P.; Yao, Y.; Chen, H.; Tang, F.; Xiong, M. An Interferometric Synthetic Aperture Radar Tropospheric Delay Correction Method Based on a Global Navigation Satellite System and a Backpropagation Neural Network: More Suitable for Areas with Obvious Terrain Changes. Sensors 2023, 23, 9760. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pavelsky, T.M.; Yao, F.; Yang, X.; Zhang, S.; Chapman, B.; Song, C.; Sebastian, A.; Frizzelle, B.; Frankenberg, E.; et al. Flood Extent Mapping During Hurricane Florence With Repeat-Pass L-Band UAVSAR Images. Water Resour. Res. 2022, 58, e2021WR030606. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Wester, S.J.; Grimson, R.; Minotti, P.G.; Booij, M.J.; Brugnach, M. Hydrodynamic Modelling of a Tidal Delta Wetland Using an Enhanced Quasi-2D Model. J. Hydrol. 2018, 559, 315–326. [Google Scholar] [CrossRef]
- Na, X.; Li, W. Modeling Hydrological Regimes of Floodplain Wetlands Using Remote Sensing and Field Survey Data. Water 2022, 14, 4126. [Google Scholar] [CrossRef]
- Zhang, X.; Jones, C.E.; Oliver-Cabrera, T.; Simard, M.; Fagherazzi, S. Using Rapid Repeat SAR Interferometry to Improve Hydrodynamic Models of Flood Propagation in Coastal Wetlands. Adv. Water Resour. 2022, 159, 104088. [Google Scholar] [CrossRef]
- Deverel, S.J.; Leighton, D.A. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA. San. Fr. Estuary Watershed Sci. 2010, 8. [Google Scholar] [CrossRef]
- Sharma, P.; Jones, C.E.; Dudas, J.; Bawden, G.W.; Deverel, S. Monitoring of Subsidence with UAVSAR on Sherman Island in California’s Sacramento–San Joaquin Delta. Remote Sens. Environ. 2016, 181, 218–236. [Google Scholar] [CrossRef]
- GoogleEarth. V7.3.6.9796. Wax Lake Delta, Louisiana, USA. 91.37714 W, 29.52228 N. Airbus 2024 (Acquired 28 November 2023). Available online: https://www.earth.google.com/ (accessed on 22 March 2024).
- GoogleEarth. V7.3.6.9796. Wax Lake Delta, Louisiana, USA. 91.41475 W, 29.58206 N. Airbus 2024 (Acquired 28 November 2023). Available online: https://www.earth.google.com/ (accessed on 22 March 2024).
- Goumehei, E.; Tolpekin, V.; Stein, A.; Yan, W. Surface Water Body Detection in Polarimetric SAR Data Using Contextual Complex Wishart Classification. Water Resour. Res. 2019, 55, 7047–7059. [Google Scholar] [CrossRef]
- Bonnema, M.; David, C.H.; de Frasson, R.P.M.; Oaida, C.; Yun, S. The Global Surface Area Variations of Lakes and Reservoirs as Seen from Satellite Remote Sensing. Geophys. Res. Lett. 2022, 49, e2022GL098987. [Google Scholar] [CrossRef]
- Shaw, J.B.; Ayoub, F.; Jones, C.E.; Lamb, M.P.; Holt, B.; Wagner, R.W.; Coffey, T.S.; Chadwick, J.A.; Mohrig, D. Airborne Radar Imaging of Subaqueous Channel Evolution in Wax Lake Delta, Louisiana, USA. Geophys. Res. Lett. 2016, 43, 5035–5042. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L. Monitoring South Florida Wetlands Using ERS-1 SAR Imagery. Photogramm. Eng. Remote Sens. 1997, 63, 281–291. [Google Scholar]
- Hagberg, J.O.; Ulander, L.M.H.; Askne, J. Repeat-Pass SAR Interferometry over Forested Terrain. IEEE Trans. Geosci. Remote Sens. 1995, 33, 331–340. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-Based Detection of Flooded Vegetation—A Review of Characteristics and Approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Kwoun, O.; Lu, Z. Multi-Temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal Wetlands in Southeastern Louisiana. Photogramm. Eng. Remote Sens. 2009, 75, 607–617. [Google Scholar] [CrossRef]
- Brisco, B.; Ahern, F.; Murnaghan, K.; White, L.; Canisus, F.; Lancaster, P. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring. Remote Sens. 2017, 9, 158. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. National Agriculture Imagery Program (NAIP)M_2909129_SE_15_1_20170910 (Published 20170910). Available online: https://doi.org/10.5066/F7QN651G (accessed on 31 March 2024).
- Brencher, G.; Henderson, S.T.; Shean, D.E. Removing Atmospheric Noise from InSAR Interferograms in Mountainous Regions with a Convolutional Neural Network. Comput. Geosci. 2025, 194, 105771. [Google Scholar] [CrossRef]
- Grimaldi, S.; Xu, J.; Li, Y.; Pauwels, V.R.N.; Walker, J.P. Flood Mapping under Vegetation Using Single SAR Acquisitions. Remote Sens. Environ. 2020, 237, 111582. [Google Scholar] [CrossRef]
- Rapinel, S.; Betbeder, J.; Denize, J.; Fabre, E.; Pottier, E.; Hubert-Moy, L. SAR Analysis of Wetland Ecosystems: Effects of Band Frequency, Polarization Mode and Acquisition Dates. ISPRS J. Photogramm. Remote Sens. 2020, 170, 103–113. [Google Scholar] [CrossRef]
- Zhang, B.; Wdowinski, S.; Gann, D. Space-Based Detection of Significant Water-Depth Increase Induced by Hurricane Irma in the Everglades Wetlands Using Sentinel-1 SAR Backscatter Observations. Remote Sens. 2022, 14, 1415. [Google Scholar] [CrossRef]
- Géant, C.B.; Gustave, M.N.; Schmitz, S. Mapping Small Inland Wetlands in the South-Kivu Province by Integrating Optical and SAR Data with Statistical Models for Accurate Distribution Assessment. Sci. Rep. 2023, 13, 17626. [Google Scholar] [CrossRef] [PubMed]
- Banks, S.; White, L.; Behnamian, A.; Chen, Z.; Montpetit, B.; Brisco, B.; Pasher, J.; Duffe, J. Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests. Remote Sens. 2019, 11, 670. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory. Remote Sens. 2018, 10, 580. [Google Scholar] [CrossRef]
- Huang, B.; Li, P.; Lu, H.; Yin, J.; Li, Z.; Wang, H. WaterDetectionNet: A New Deep Learning Method for Flood Mapping with SAR Image Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14471–14485. [Google Scholar] [CrossRef]
- Pech-May, F.; Aquino-Santos, R.; Delgadillo-Partida, J. Sentinel-1 SAR Images and Deep Learning for Water Body Mapping. Remote Sens. 2023, 15, 3009. [Google Scholar] [CrossRef]
- Peña, F.J.; Hübinger, C.; Payberah, A.H.; Jaramillo, F. DeepAqua: Semantic Segmentation of Wetland Water Surfaces with SAR Imagery Using Deep Neural Networks without Manually Annotated Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103624. [Google Scholar] [CrossRef]
- Jones, C.; Varugu, B.; Oliver, T.; Lou, Y. Pre-Delta-X: UAVSAR Georeferenced Channel Maps, Atchafalaya Basin, LA, USA, 2016, V2; ORNL DAAC: Oak Ridge, TN, USA, 2024. [CrossRef]
- Donatelli, C.; Passalacqua, P.; Jensen, D.; Oliver-Cabrera, T.; Jones, C.E.; Fagherazzi, S. Spatial Variability in Salt Marsh Drainage Controlled by Small Scale Topography. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007219. [Google Scholar] [CrossRef]
- Frey, O.; Werner, C.L.; Manconi, A.; Coscione, R. Measurement of Surface Displacements with a UAV-Borne/Car-Borne L-Band DInSAR System: System Performance and Use Cases. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Donnellan, A.; Harding, D.; Lundgren, P.; Wessels, K.; Simard, M.; Parrish, C.; Jones, C.; Lou, Y.; Stoker, J.; Ranson, K.J.; et al. Observing Earth’s Changing Surface Topography & Vegetation Structure: A Framework for the Decade; United States Geological Survey: Washington, DC, USA, 2021.
UAVSAR | NAIP | AVIRIS-NG | ||
---|---|---|---|---|
Open Water (%) | Land (%) | Open Water (%) | Land (%) | |
Open water | 80.5 (TP) | 6.4 (FP) | 86.6 (TP) | 9.3 (FP) |
Land | 19.5 (FN) | 93.6 (TN) | 13.4 (FN) | 90.7 (TN) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varugu, B.K.; Jones, C.E.; Oliver-Cabrera, T.; Simard, M.; Jensen, D.J. Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar. Remote Sens. 2025, 17, 459. https://doi.org/10.3390/rs17030459
Varugu BK, Jones CE, Oliver-Cabrera T, Simard M, Jensen DJ. Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar. Remote Sensing. 2025; 17(3):459. https://doi.org/10.3390/rs17030459
Chicago/Turabian StyleVarugu, Bhuvan K., Cathleen E. Jones, Talib Oliver-Cabrera, Marc Simard, and Daniel J. Jensen. 2025. "Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar" Remote Sensing 17, no. 3: 459. https://doi.org/10.3390/rs17030459
APA StyleVarugu, B. K., Jones, C. E., Oliver-Cabrera, T., Simard, M., & Jensen, D. J. (2025). Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar. Remote Sensing, 17(3), 459. https://doi.org/10.3390/rs17030459