Using Fracture-Induced Electromagnetic Radiation (FEMR) for In Situ Stress Analysis: A Case Study of the Ramon Crater
Abstract
:1. Introduction
1.1. The Method of Fracture-Induced Electromagnetic Radiation
1.2. Stress Indicators and Stress Measurements in the Field
2. Materials and Methods
2.1. Brief Geological Background
2.2. Stress Regime in Southern Israel
2.3. Instrumentation and Data Processing
2.4. Calculation of Stress Azimuth
- North–south (Ex);
- West–east (Ey);
- Vertical (Ez).
3. Results
FEMR Rose Diagrams
4. Discussion
4.1. Comparison of the FEMR Data with the Stress Regime in the Ramon Crater Area
4.2. The Reason for FEMR Excitation in a “Stable” Stress Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lichtenberger, M. Regional stress field as determined from electromagnetic radiation in a tunnel. J. Struct. Geol. 2005, 27, 2150–2158. [Google Scholar] [CrossRef]
- Greiling, R.O.; Obermeyer, H. Natural Electromagnetic Radiation (EMR) and its Application in Structural Geology and Neotectonics. J. Geol. Soc. India 2010, 75, 278–288. [Google Scholar] [CrossRef]
- Mallik, J.; Mathew, G.; Angerer, T.; Greiling, R.O. Determination of directions of horizontal principal stress and identification of active faults in Kachchh (India) by electromagnetic radiation (EMR). J. Geodyn. 2008, 45, 234–245. [Google Scholar] [CrossRef]
- Das, S.; Mallik, J.; Das, A.; Bandyopadhyay, K. Comparison of stress azimuth data derived by geogenic electromagnetic radiation technique and from the analysis of exhumation joints. Curr. Sci. 2018, 115, 1039–1041. [Google Scholar] [CrossRef]
- Das, S.; Mallik, J.; Bandyopadhyay, K.; Das, A. Evaluation of maximum horizontal near-surface stress (SHmax) azimuth and its distribution along Narmada-Son Lineament, India, by geogenic Electromagnetic Radiation (EMR) technique. J. Geodyn. 2020, 133, 101672. [Google Scholar] [CrossRef]
- Reches, Z.; Lockner, D.A. Nucleation and growth of faults in brittle rocks. J. Geophys. Res. Solid. Earth 1994, 99, 18159–18173. [Google Scholar] [CrossRef]
- Frid, V.; Rabinovitch, A.; Bahat, D. Fracture induced electromagnetic radiation. J. Phys. D Appl. Phys. 2003, 36, 1620–1628. [Google Scholar] [CrossRef]
- Bahat, D.; Rabinovitch, A.; Frid, V. Tensile Fracturing in Rocks—Tectonofractographic and Electromagnetic Methods; Springer: Berlin/Heidelberg, Germany, 2005; p. 570. [Google Scholar]
- Rabinovitch, A.; Frid, V.; Bahat, D. Surface oscillations—A possible source of fracture-induced electromagnetic radiation. Tectonophysics 2007, 431, 15–21. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Lazaridou, M. Electric pulses some minutes before earthquake occurrences. Appl. Phys. Lett. 2007, 90, 064104. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Karadimitrakis, A.; Eftaxias, K. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions. Chaos 2013, 23, 023117. [Google Scholar] [CrossRef]
- Wesson, R.L. Predicted Variation of stress orientation with depth near an active fault: Application to the Cajon Pass scientific drill hole, Southern California. Geophys. Res. Lett. 1988, 15, 1009–1012. [Google Scholar] [CrossRef]
- Frid, V.; Rabinovitch, A.; Bahat, D.; Kushnir, U. Fracture electromagnetic radiation induced by a seismic active zone (in the Vicinity of Eilat City, Southern Israel). Remote Sens. 2023, 15, 3639. [Google Scholar] [CrossRef]
- Das, S.; Frid, V.; Rabinovitch, A.; Bahat, D.; Kushnir, U. Insights into the Dead Sea Transform Activity through the study of fracture-induced electromagnetic radiation (FEMR) signals before the Syrian-Turkey earthquake (Mw-6.3) on 20.2.2023. Sci. Rep. 2024, 14, 4579. [Google Scholar] [CrossRef] [PubMed]
- Garfunkel, Z.; Ben-Avraham, Z. The structure of the Dead Sea basin. Tectonophysics 1996, 266, 155–176. [Google Scholar] [CrossRef]
- Eyal, Y.; Gross, M.R.; Engelder, T.; Becker, A. Joint development during fluctuation of the regional stress field in southern Israel. J. Struct. Geol. 2001, 23, 279–296. [Google Scholar] [CrossRef]
- Zoback, M.L.; Zoback, M.D.; Adams, J.; Assumpção, M.; Bell, S.; Bergman, E.A.; Blümling, P.; Brereton, N.R.; Denham, D.; Ding, J.; et al. Global patterns of tectonic stress. Nature 1989, 341, 291–298. [Google Scholar] [CrossRef]
- Eyal, M.; Reches, Z. Structural development of the Ramon anticline, southern Israel. Tectonophysics 1983, 99, 223–248. [Google Scholar]
- Available online: https://www.gov.il/en/pages/israel-and-regions-aerial-photo-map (accessed on 12 November 2024).
- Van Eck, T.; Hofstetter, A. Micro-earthquake activity in the Dead Sea region. Geophys. J. Int. 1989, 99, 605–620. [Google Scholar]
- Zoback, M.L. First- and second-order patterns of stress in the lithosphere: The World Stress Map. J. Geophys. Res. Solid Earth 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Becker, A. Bedding-plane slip over pre-existing fault, an example: The Ramon Fault, Israel. Tectonophysics 1994, 230, 91–104. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Vaksman, V.L. Makhtesh Ramon Complex Deposit (Southern Israel)—A Window to the Upper Mantle. Int. J. Min. Sci. (IJMS) 2017, 3, 1–28. [Google Scholar]
- Gvirtzman, G.; Garfunkel, Z. Volcanism and the evolution of the Mesozoic sedimentary basins of Israel. Geol. Soc. Am. Bull. 1997, 109, 1159–1172. [Google Scholar]
- Avni, Y. Structure and landscape evolution of the Makhteshim Country—Interrelations between monoclines, truncation surfaces and the evolution of the Makhteshim. In The Makhteshim Country: A Laboratory of Nature; Krasnov, B., Mazor, E., Eds.; Pensoft: Sofia, Bulgaria, 2001; pp. 33–58. [Google Scholar]
- Weinberger, R. Joint sets and their tectonic significance in southern Israel. J. Struct. Geol. 1997, 19, 129–145. [Google Scholar]
- Garfunkel, Z. Internal structure of the Dead Sea leaky transform (Rift) in relation to plate kinematics. Tectonophysics 1981, 80, 81–108. [Google Scholar] [CrossRef]
- Eyal, Y. Stress field fluctuations along the Dead Sea rift since the middle Miocene. Tectonophysics 1996, 15, 157–170. [Google Scholar] [CrossRef]
- Avni, Y.; Sneh, A.; Bartov, Y. Geological Map of Israel, Sheet 18- Ramon Crater; Geological Survey of Israel: Jerusalem, Israel, 1998. [Google Scholar]
- Fossen, H. Structural Geology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Pe’eri, S.; Wdowinski, S.; Shtibelman, A.; Bechor, N.; Bock, Y.; Nikolaidis, R.; van Domselaar, M. Current plate motion across the Dead Sea Fault from three years of continuous GPS monitoring. Geophys. Res. Lett. 2002, 29, 42-1–42-4. [Google Scholar] [CrossRef]
- Marco, S.; Klinger, Y. Review of on-fault palaeoseismic studies along the Dead Sea fault. In The Dead Sea Transform Fault System: Reviews; Garfunkel, Z., Ben-Avraham, Z., Kagan, E.J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 183–205. [Google Scholar]
- Dembo, N.; Hamiel, Y.; Granot, R. Intraplate rotational deformation induced by faults. J. Geophys. Res. Solid Earth 2015, 120, 7308–7321. [Google Scholar] [CrossRef]
- Di Bucci, D.; Burrato, P.; Vannoli, P.; Valensise, G. Tectonic evidence for the ongoing Africa-Eurasia convergence in central Mediterranean foreland areas: A journey among long-lived shear zones, large earthquakes, and elusive fault motions. J. Geophys. Res. 2010, 15, B12404. [Google Scholar] [CrossRef]
- Kahle, H.-G.; Mueller, S. Structure and dynamics of the Eurasian-African/Arabian plate boundary system: Objectives, tasks and resources of the Wegener group. J. Geodvnamics 1998, 25, 303–325. [Google Scholar] [CrossRef]
Location | Latitude/ Longitude | Rose Diagram | Calculated Azimuth | Standard Deviation | Strike |
---|---|---|---|---|---|
1 | 30.615250/ 34.839111 | 65 | 12.99 | N295°E | |
2 | 30.620694/ 34.843361 | 51 | −1.007 | N309°E | |
3a | 30.605333/ 34.866750 | 59.29 | 7.282 | N301°E | |
3b | 30.603361/ 34.872111 | 53.29 | 1.280 | N307°E | |
4 | 30.598500/ 34.866889 | 48.44 | −3.563 | N312°E | |
5 | 30.592738/ 34.888841 | 40.60 | −11.404 | N319°E | |
6 | 30.57539/ 34.87761 | 49.75 | −2.258 | N310°E | |
7 | 30.594639/ 34.886833 | 52.67 | 0.661 | N307°E | |
8 | 30.59583/ 34.876167 | 48.02 | −3.983 | N312°E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Frid, V. Using Fracture-Induced Electromagnetic Radiation (FEMR) for In Situ Stress Analysis: A Case Study of the Ramon Crater. Remote Sens. 2025, 17, 467. https://doi.org/10.3390/rs17030467
Das S, Frid V. Using Fracture-Induced Electromagnetic Radiation (FEMR) for In Situ Stress Analysis: A Case Study of the Ramon Crater. Remote Sensing. 2025; 17(3):467. https://doi.org/10.3390/rs17030467
Chicago/Turabian StyleDas, Shreeja, and Vladimir Frid. 2025. "Using Fracture-Induced Electromagnetic Radiation (FEMR) for In Situ Stress Analysis: A Case Study of the Ramon Crater" Remote Sensing 17, no. 3: 467. https://doi.org/10.3390/rs17030467
APA StyleDas, S., & Frid, V. (2025). Using Fracture-Induced Electromagnetic Radiation (FEMR) for In Situ Stress Analysis: A Case Study of the Ramon Crater. Remote Sensing, 17(3), 467. https://doi.org/10.3390/rs17030467