Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations
Abstract
:1. Introduction
2. Geomagnetic Storm Event and Data
2.1. May 2024 Extreme Geomagnetic Storm
2.2. SABER Density Data
2.3. Kernel Density Estimation
3. Results
3.1. Time and Altitude Responses of MLT Density
3.2. Latitude and Local Time Responses of MLT Density
4. Discussion
5. Conclusions
- Density decreases and increases are observed in the MLT region during the geomagnetic storm. Decreases occur primarily during the main phase and the following day, while increases are mainly observed in the days after the main phase.
- The response intensity diminishes at lower altitudes, while the delay becomes more pronounced as altitude reduces. The proportion of significant response points varies with altitude: the proportion of decreases is lowest at 105 km (25.2%) and increases as altitude reduces, reaching 30.3% at 95 km. In contrast, the proportion of increases declines from ~16.5% at 105 km to ~14.0% at 95 km.
- Density decreases are primarily observed in two regions: one above 65°N, where the intensity weakens at lower altitudes, and the other near 60°N, where the intensity strengthens as altitude decreases. Density increases are mainly concentrated around 60°N, with a decrease in intensity at lower altitudes.
- Density response during geomagnetic storms is stronger in the dusk sector than in the dawn sector.
- Density response is influenced by atmospheric expansion driven by temperature variations, including a decrease in density caused by local expansion and an increase in density due to the upward displacement of the lower atmospheric expansion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacchia, L.G. Two atmospheric effects in the orbital acceleration of artificial satellites. Nature 1959, 18, 526–527. [Google Scholar] [CrossRef]
- Jacchia, L.G.; Slowey, J.; Verniani, F. Geomagnetic perturbations and upper-atmosphere heating. J. Geophys. Res. 1967, 72, 1423–1434. [Google Scholar] [CrossRef]
- Roemer, M. Geomagnetic activity effect on atmospheric density in the 250 to 800 km altitude region. Space Res. 1971, 11, 965–974. [Google Scholar]
- Allan, R.R. Response of dayside thermosphere to an intense geomagnetic storm. Nature 1974, 247, 23–25. [Google Scholar] [CrossRef]
- Berger, C.; Barlier, F. Asymmetrical structure in the thermosphere during magnetic storms as deduced from the CACTUS accelerometer data. Adv. Space Res. 1981, 1, 231–235. [Google Scholar] [CrossRef]
- Forbes, J.M.; Roble, R.G.; Marcos, F.A. Magnetic activity dependence of high-latitude thermospheric winds and densities below 200 km. J. Geophys. Res. Space Phys. 1993, 98, 13693–13702. [Google Scholar] [CrossRef]
- Forbes, J.M.; Gonzalez, R.; Marcos, F.A.; Revelle, D.; Parish, H. Magnetic storm response of lower thermosphere density. J. Geophys. Res. Space Phys. 1996, 101, 2313–2319. [Google Scholar] [CrossRef]
- Rhoden, E.A.; Forbes, J.M.; Marcos, F.A. The influence of geomagnetic and solar variabilities on lower thermosphere density. J. Atmos. Sol.-Terr. Phys. 2000, 62, 999–1013. [Google Scholar] [CrossRef]
- Bruinsma, S.; Forbes, J.M.; Nerem, R.S.; Zhang, X. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. Space Phys. 2006, 111, A6. [Google Scholar] [CrossRef]
- Chen, G.; Xu, J.; Wang, W.; Burns, A.G. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies. J. Geophys. Res. Space Phys. 2014, 119, 7928–7939. [Google Scholar] [CrossRef]
- Li, R.; Lei, J. Responses of thermospheric mass densities to the October 2016 and September 2017 geomagnetic storms revealed from multiple satellite observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028534. [Google Scholar] [CrossRef]
- Banks, P.M. Observations of Joule and particle heating in the auroral zone. J. Atmos. Terr. Phys. 1977, 39, 179–193. [Google Scholar] [CrossRef]
- Rees, M.H.; Emery, B.A.; Roble, R.G.; Stamnes, K. Neutral and ion gas heating by auroral electron precipitation. J. Geophys. Res. 1983, 88, 6289–6300. [Google Scholar] [CrossRef]
- Roble, R.G.; Emery, B.A.; Killeen, T.L.; Reid, G.C.; Solomon, S.; Garcia, R.R.; Evans, D.S.; Hays, P.B.; Carignan, G.R.; Heelis, R.A.; et al. Joule heating in the mesosphere and thermosphere during the July 13, 1982, solar proton event. J. Geophys. Res. 1987, 92, 6083–6090. [Google Scholar] [CrossRef]
- Smith, A.K. Global dynamics of the MLT. Surv. Geophys. 2012, 33, 1177–1230. [Google Scholar] [CrossRef]
- Xu, X.; Manson, A.H.; Meek, C.E.; Chshyolkova, T.; Drummond, J.R.; Hall, C.M.; Riggin, D.M.; Hibbins, R.E. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data. Ann. Geophys. 2009, 27, 3387–3409. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Wang, W.; Xu, J.; Zhang, Y.; Li, J.; Russell III, J.M.; Hervig, M.E.; Bailey, S.; Nakamura, T. Responses of lower thermospheric temperature to the 2013 St. Patrick’s day geomagnetic storm. Geophys. Res. Lett. 2018, 45, 4656–4664. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kwak, Y.S.; Kim, K.C.; Kim, Y.H. Dynamically unstable strong wind shears observed in the polar mesosphere summer echo layer associated with geomagnetic disturbances. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027013. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Y.; Zhang, S.; Xue, J.; Luo, J.; Zhou, Q.; Huang, C.; Huang, K.; Yu, Y.; Li, G. Study of a Quasi-27-Day Wave in the MLT Region During Recurrent Geomagnetic Storms in Autumn 2018. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028865. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Li, J.; Lu, J.; Gu, C.; Zhu, M.; Tian, Y. Responses of mesosphere and lower thermosphere temperature to the geomagnetic storm on 7–8 September 2017. Universe 2022, 8, 96. [Google Scholar] [CrossRef]
- Yi, W.; Reid, I.M.; Xue, X.; Younger, J.P.; Murphy, D.J.; Chen, T.; Dou, X. Response of neutral mesospheric density to geomagnetic forcing. Geophys. Res. Lett. 2017, 44, 8647–8655. [Google Scholar] [CrossRef]
- Yi, W.; Reid, I.M.; Xue, X.; Murphy, D.J.; Hall, C.M.; Tsutsumi, M.; Ning, B.; Li, G.; Younger, J.P.; Chen, T.; et al. High- and middle-latitude neutral mesospheric density response to geomagnetic storms. Geophys. Res. Lett. 2018, 45, 436–444. [Google Scholar] [CrossRef]
- Baron, P.; Ochiai, S.; Dupuy, E.; Larsson, R.; Liu, H.; Manago, N.; Murtagh, D.; Oyama, S.; Sagawa, H.; Saito, A.; et al. Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2). Atmos. Meas. Tech. 2019, 13, 219–237. [Google Scholar] [CrossRef]
- Crowley, G. Dynamics of the Earth’s thermosphere: A review. Rev. Geophys. 1991, 29, 1143–1165. [Google Scholar] [CrossRef]
- Lazzús, J.A.; Salfate, I. Report on the effects of the May 2024 Mother’s day geomagnetic storm observed from Chile. J. Atmos. Sol.-Terr. Phys. 2024, 261, 106304. [Google Scholar] [CrossRef]
- Spogli, L.; Alberti, T.; Bagiacchi, P.; Cafarella, L.; Cesaroni, C.; Cianchini, G.; Coco, I.; Di Mauro, D.; Ghidoni, R.; Giannattasio, F.; et al. The effects of the May 2024 Mother’s day superstorm over the Mediterranean sector: From data to public communication. Ann. Geophys. 2024, 67, 218. [Google Scholar] [CrossRef]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.J.; Esplin, R.W. Overview of the SABER experiment and preliminary calibration results. Opt. Spectrosc. Tech. Instrum. Atmos. Space Res. III 1999, 3756, 277–288. [Google Scholar]
- Cheng, X.; Yang, J.; Xiao, C.; Hu, X. Density correction of NRLMSISE-00 in the middle atmosphere (20–100 km) based on TIMED/SABER density data. Atmosphere 2020, 11, 341. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Daniels, T.; Hunt, L.A.; Yue, J.; Marshall, B.T.; Russell, J.M., III; Remsberg, E.E.; Tansock, J.; Esplin, R.; Jensen, M.; et al. Radiometric stability of the SABER instrument. Earth Space Sci. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Remsberg, E.E.; Marshall, B.T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G.S.; Martin-Torres, J.; Mlynczak, M.G.; Russell, J.M., III; Smith, A.K.; Zhao, Y.; et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. Atmos. 2008, 113, D17. [Google Scholar] [CrossRef]
- Xu, J.; She, C.Y.; Yuan, W.; Mertens, C.; Mlynczak, M.; Russell, J. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. J. Geophys. Res. Space Phys. 2006, 111, A10. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Marshall, B.T.; Garcia, R.R.; Hunt, L.; Yue, J.; Harvey, V.L.; Lopez-Puertas, M.; Mertens, C.; Russell, J.M., III. Algorithm stability and the long-term geospace data record from TIMED/SABER. Geophys. Res. Lett. 2023, 50, e2022GL102398. [Google Scholar] [CrossRef]
- Chen, Y.C. A tutorial on kernel density estimation and recent advances. Biostat. Epidemiol. 2017, 1, 161–187. [Google Scholar] [CrossRef]
- Epanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Its Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Wang, N.; Yue, J.; Wang, W.; Qian, L.; Jian, L.; Zhang, J. A comparison of the CIR- and CME-induced geomagnetic activity effects on mesosphere and lower thermospheric temperature. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029029. [Google Scholar] [CrossRef]
- Hagan, M.E.; Chang, J.L.; Avery, S.K. Global-scale wave model estimates of nonmigrating tidal effects. J. Geophys. Res. Atmos. 1997, 102, 16439–16452. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Xu, J.; Wang, L.; Yuan, W.; Russell, J.M., III; Hervig, M.E. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations. J. Geophys. Res. Atmos. 2014, 119, 7368–7381. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Xu, J.; Garcia, R.R.; Russell, J.M., III; Mlynczak, M.; Wu, D.L.; Nakamura, T. Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res. Atmos. 2017, 122, 6231–6249. [Google Scholar] [CrossRef]
- Xu, J.; Smith, A.K.; Liu, M.; Liu, X.; Gao, H.; Jiang, G.; Yuan, W. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere. J. Geophys. Res. Atmos. 2014, 119, 471–489. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Liu, D.; Guo, W.; Zhang, Y. Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event. Atmos. Chem. Phys. 2024, 24, 10113–10127. [Google Scholar] [CrossRef]
- Emmert, J.T. Thermospheric mass density: A review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Rishbeth, H.; Moffett, R.J.; Quegan, S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1996, 101, 2343–2353. [Google Scholar] [CrossRef]
- Richmond, A.D.; Lu, G. Upper-atmospheric effects of magnetic storms: A brief tutorial. J. Atmos. Sol.-Terr. Phys. 2000, 62, 1115–1127. [Google Scholar] [CrossRef]
- Banks, P.M. Joule heating in the high-latitude mesosphere. J. Geophys. Res. Space Phys. 1979, 84, 6709–6712. [Google Scholar] [CrossRef]
- Wei, G.; Lu, J.; Tang, F.; Li, J.; Sun, M. The dawn-dusk asymmetry in mesosphere and lower thermosphere temperature disturbances during geomagnetic storms at high latitude. Earth Planet. Phys. 2024, 8, 356–367. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Stolle, C.; Stephan, C.; Mlynczak, M.G. Lower thermospheric temperature response to geomagnetic activity at high latitudes. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032639. [Google Scholar] [CrossRef]
- Li, J.; Wei, G.; Wang, W.; Luo, Q.; Lu, J.; Tian, Y.; Xiong, S.; Sun, M.; Shen, F.; Yuan, T.; et al. A modeling study on the responses of the mesosphere and lower thermosphere (MLT) temperature to the initial and main phases of geomagnetic storms at high latitudes. J. Geophys. Res. Atmos. 2023, 128, 1–14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Li, J.; Lu, J.; Fu, S.; Sun, M.; Wei, G.; Zhan, M.; Wang, M.; Xiong, S. Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations. Remote Sens. 2025, 17, 511. https://doi.org/10.3390/rs17030511
Huang N, Li J, Lu J, Fu S, Sun M, Wei G, Zhan M, Wang M, Xiong S. Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations. Remote Sensing. 2025; 17(3):511. https://doi.org/10.3390/rs17030511
Chicago/Turabian StyleHuang, Ningtao, Jingyuan Li, Jianyong Lu, Shuai Fu, Meng Sun, Guanchun Wei, Mingming Zhan, Ming Wang, and Shiping Xiong. 2025. "Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations" Remote Sensing 17, no. 3: 511. https://doi.org/10.3390/rs17030511
APA StyleHuang, N., Li, J., Lu, J., Fu, S., Sun, M., Wei, G., Zhan, M., Wang, M., & Xiong, S. (2025). Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations. Remote Sensing, 17(3), 511. https://doi.org/10.3390/rs17030511