An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity
Abstract
:1. Introduction
2. Study Site and Data Collection
2.1. Study Site
2.2. Data Collection
2.2.1. Image Acquisition
2.2.2. Laser Point Cloud Acquisition
2.2.3. Field Sample Collection
2.3. Calibration Experiment
3. Methods
3.1. Data Preprocessing
3.1.1. Intensity Correction
3.1.2. Grain Size Analysis
3.2. Moisture Prediction Model
3.2.1. Feature Parameter Extraction and Screening
3.2.2. BP Network Model
3.3. Model Validation
3.3.1. Data Fusion
3.3.2. Grain Size Estimation
4. Results
4.1. Results of Intensity Correction
4.2. Sediment Grain Size and Distribution Characteristics
4.3. Feature Parameters
4.4. Moisture Estimation
5. Discussion
5.1. Geometric Effect Correction of Original Intensity
5.2. Effect of Grain Size Variation on Feature Parameters
5.3. Advantages of Data Fusion
5.4. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2021, 2, 70–84. [Google Scholar] [CrossRef]
- Lopez, O.M.; Hegy, M.C.; Missimer, T.M. Statistical comparisons of grain size characteristics, hydraulic conductivity, and porosity of barchan desert dunes to coastal dunes. Aeolian Res. 2020, 43, 100576. [Google Scholar] [CrossRef]
- van Westen, B.; de Vries, S.; Cohn, N.; van Ijzendoorn, C.; Strypsteen, G.; Hallin, C. AeoLiS: Numerical modelling of coastal dunes and aeolian landform development for real-world applications. Environ. Model. Softw. 2024, 179, 106093. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Yang, Y.; Ollerhead, J.; Hesp, P.A.; Walker, I.J. The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surf. Process. Landf. 2008, 33, 55–74. [Google Scholar] [CrossRef]
- Edwards, B.L.; Namikas, S.L. Small-scale variability in surface moisture on a fine-grained beach: Implications for modeling aeolian transport. Earth Surf. Process. Landf. 2009, 34, 1333–1338. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Li, M. Estimating soil moisture content using laboratory spectral data. J. For. Res. 2019, 30, 1073–1080. [Google Scholar] [CrossRef]
- Philpot, W. Spectral Reflectance of Wetted Soils. In Proceedings of the Art, Science and Applications of Reflectance Spectroscopy (ASARS), Boulder, CO, USA, 23–25 February 2010. [Google Scholar]
- Persson, M. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone J. 2005, 4, 1119–1122. [Google Scholar] [CrossRef]
- Liu, G.; Tian, S.; Xu, G.; Zhang, C.; Cai, M. Combination of effective color information and machine learning for rapid prediction of soil water content. J. Rock Mech. Geotech. Eng. 2023, 15, 2441–2457. [Google Scholar] [CrossRef]
- Darke, I.; Davidson-Arnott, R.; Ollerhead, J. Measurement of Beach Surface Moisture Using Surface Brightness. J. Coast. Res. 2009, 25, 147–256. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I. Meso-scale modelling of aeolian sediment input to coastal dunes. Geomorphology 2011, 130, 230–243. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.; Ollerhead, J. Application of a Remote Sensing Technique to the Study of Coastal Dunes. J. Coast. Res. 2009, 25, 1160–1167. [Google Scholar] [CrossRef]
- Jin, J.; De Sloover, L.; Verbeurgt, J.; Stal, C.; Deruyter, G.; Montreuil, A.-L.; De Maeyer, P.; De Wulf, A. Measuring Surface Moisture on a Sandy Beach based on Corrected Intensity Data of a Mobile Terrestrial LiDAR. Remote Sens. 2020, 12, 209. [Google Scholar] [CrossRef]
- Nield, J.M.; King, J.; Jacobs, B. Detecting surface moisture in aeolian environments using terrestrial laser scanning. Aeolian Res. 2014, 12, 9–17. [Google Scholar] [CrossRef]
- Smit, Y.; Ruessink, G.; Brakenhoff, L.B.; Donker, J.J.A. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner. Aeolian Res. 2018, 31, 19–27. [Google Scholar] [CrossRef]
- Elsherif, A.; Gaulton, R.; Mills, J. Four Dimensional Mapping of Vegetation Moisture Content Using Dual-Wavelength Terrestrial Laser Scanning. Remote Sens. 2019, 11, 2311. [Google Scholar] [CrossRef]
- Junttila, S.; Hölttä, T.; Puttonen, E.; Katoh, M.; Vastaranta, M.; Kaartinen, H.; Holopainen, M.; Hyyppä, H. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 2021, 255, 112274. [Google Scholar] [CrossRef]
- Junttila, S.; Sugano, J.; Vastaranta, M.; Linnakoski, R.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, H.; Hyyppä, J. Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study with Norway Spruce Seedlings. Front. Plant Sci. 2018, 9, 299. [Google Scholar] [CrossRef]
- Fang, W.; Huang, X.; Zhang, F.; Li, D. Intensity Correction of Terrestrial Laser Scanning Data by Estimating Laser Transmission Function. IEEE Trans. Geosci. Remote Sens. 2015, 53, 942–951. [Google Scholar] [CrossRef]
- Sanchiz-Viel, N.; Bretagne, E.; Mouaddib, E.M.; Dassonvalle, P. Radiometric correction of laser scanning intensity data applied for terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2021, 172, 1–16. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X. Intensity data correction based on incidence angle and distance for terrestrial laser scanner. J. Appl. Remote Sens. 2015, 9, 094094. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery. Ocean Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
- Pan, Y.; Flindt, M.; Schneider-Kamp, P.; Holmer, M. Beach wrack mapping using unmanned aerial vehicles for coastal environmental management. Ocean Coast. Manag. 2021, 213, 105843. [Google Scholar] [CrossRef]
- Nolet, C.; Poortinga, A.; Roosjen, P.; Bartholomeus, H.; Ruessink, G. Measuring and Modeling the Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand. PLoS ONE 2014, 9, e112151. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Yang, J. Studies on muddy and consolidating process at Silver Beach in Beihai. Mar. Forecast. 2017, 34, 83–88. [Google Scholar] [CrossRef]
- Zheng, W.; Cao, C.; Cai, F.; Qi, H.; He, Y.; Li, Y.; Liu, G.; Zhao, S. Responses of sediment grain size to seasonal variation of Baicheng beach morphology in Xiamen, China. J. Appl. Oceanogr. 2024, 43, 533–544. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Jin, J.; Verbeurgt, J.; De Sloover, L.; Stal, C.; Deruyter, G.; Montreuil, A.-L.; Vos, S.; De Maeyer, P.; De Wulf, A. Monitoring spatiotemporal variation in beach surface moisture using a long-range terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2021, 173, 195–208. [Google Scholar] [CrossRef]
- Tan, K.; Chen, J.; Zhang, W.; Liu, K.; Tao, P.; Cheng, X. Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2020, 159, 129–139. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 | Group 4 | ||
---|---|---|---|---|---|
Average grain size | ϕ | 1.859 | 0.064 | −0.442 | −0.706 |
1.308 | −0.174 | −0.648 | −0.721 | ||
0.997 | −0.212 | −0.658 | −0.974 | ||
Diameter (mm) | 0.275 | 0.957 | 1.358 | 1.632 | |
0.404 | 1.129 | 1.566 | 1.649 | ||
0.501 | 1.158 | 1.578 | 1.964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Tan, K.; Yin, F.; Song, P.; Huang, F. An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity. Remote Sens. 2025, 17, 522. https://doi.org/10.3390/rs17030522
Zhu J, Tan K, Yin F, Song P, Huang F. An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity. Remote Sensing. 2025; 17(3):522. https://doi.org/10.3390/rs17030522
Chicago/Turabian StyleZhu, Jun, Kai Tan, Feijian Yin, Peng Song, and Faming Huang. 2025. "An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity" Remote Sensing 17, no. 3: 522. https://doi.org/10.3390/rs17030522
APA StyleZhu, J., Tan, K., Yin, F., Song, P., & Huang, F. (2025). An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity. Remote Sensing, 17(3), 522. https://doi.org/10.3390/rs17030522