Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. MODIS Product Data
2.2.2. SM Data
2.2.3. ASTER GDEM Data
2.3. Methods
2.3.1. Data Processing
2.3.2. Stacking Algorithm
2.3.3. The Overall SM Retrieval Framework
- (1)
- The dataset, consisting of surface parameters and DEM data, is partitioned into training and prediction data sets. Subsequently, the samples are further divided into K-fold subsets with equal sizes.
- (2)
- Each base learner is utilized for K-fold training. During each training iteration, K-1 data samples are used as the training set, while the remaining data sample is used for prediction, resulting in K data samples after training. The prediction samples are predicted during each training phase.
- (3)
- Combine k sets of prediction data to obtain new training sample data, which will serve as the second layer of prediction data.
- (4)
- Utilize the data acquired in step 3 and input them into the second layer to obtain the ultimate prediction outcome, which provides us with the required SM prediction results.
2.3.4. Model Validation and Evaluation
3. Results
3.1. Overall Performance of the Retrieving and Downscaling SM
3.2. Evaluation with In Situ Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Li, Z.L.; Leng, P.; Zhou, C.H.; Chen, K.S.; Zhou, F.C.; Shang, G.F. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth-Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Huang, S.Z.; Zhang, X.; Chen, N.C.; Li, B.Y.; Ma, H.L.; Xu, L.; Li, R.H.; Niyogi, D. Drought propagation modification after the construction of the Three Gorges Dam in the Yangtze River Basin. J. Hydrol. 2021, 603, 127138. [Google Scholar] [CrossRef]
- Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Manag. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
- Xue, Z.H.; Zhang, Y.J.; Zhang, L.; Li, H. Ensemble Learning Embedded with Gaussian Process Regression for Soil Moisture Estimation: A Case Study of the Continental US. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508817. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, M.F.; Wang, L.G.; Rozenstein, O. Soil Moisture Retrieval over a Vegetation-Covered Area Using ALOS-2 L-Band Synthetic Aperture Radar Data. Remote Sens. 2021, 13, 3894. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, L.; Paloscia, S.; Santi, E.; Pettinato, S.; Wang, J.; Fang, X.; Liao, W. The Potential of ALOS-2 and Sentinel-1 Radar Data for Soil Moisture Retrieval with High Spatial Resolution over Agroforestry Areas, China. IEEE Trans. Geosci. Remote 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.X.; Yue, H. Combined Sentinel-1A with Sentinel-2A to Estimate Soil Moisture in Farmland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1292–1310. [Google Scholar] [CrossRef]
- Wang, J.J.; Wu, F.; Shang, J.L.; Zhou, Q.; Ahmad, I.; Zhou, G.S. Saline soil moisture mapping using Sentinel-1A synthetic aperture radar data and machine learning algorithms in humid region of China’s east coast. Catena 2022, 213, 106189. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; O’Neill, P.; Kellogg, K.; Entin, J. The NASA Soil Moisture Active Passive (SMAP) mission formulation. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2302–2305. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; De Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, L.; Zhang, L.; Chen, K.; Wigneron, J.; Chanzy, A.; Jackson, T. Physically Based Estimation of Bare-Surface Soil Moisture With the Passive Radiometers. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3145–3153. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Lauer, A.; Eyring, V.; Righi, M.; Buchwitz, M.; Defourny, P.; Evaldsson, M.; Friedlingstein, P.; de Jeu, R.; de Leeuw, G.; Loew, A.; et al. Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sens. Environ. 2017, 203, 9–39. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Liu, Y.; Ren, L.L.; Jiang, S.H.; Yang, X.L.; Yuan, F.; Wang, M.H.; Wei, L.Y. Drought Monitoring and Evaluation by ESA CCI Soil Moisture Products Over the Yellow River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3376–3386. [Google Scholar] [CrossRef]
- Zhao, W.; Wen, F.; Wang, Q.; Sanchez, N.; Piles, M. Seamless downscaling of the ESA CCI soil moisture data at the daily scale with MODIS land products. J. Hydrol. 2021, 603, 126930. [Google Scholar] [CrossRef]
- Huang, S.Z.; Zhang, X.; Wang, C.; Chen, N.C. Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau. Isprs J. Photogramm. Remote Sens. 2023, 197, 346–363. [Google Scholar] [CrossRef]
- Sishah, S.; Abrahem, T.; Azene, G.; Dessalew, A.; Hundera, H. Downscaling and validating SMAP soil moisture using a machine learning algorithm over the Awash River basin, Ethiopia. PLoS ONE 2023, 18, e0279895. [Google Scholar] [CrossRef]
- Sun, H.; Gao, J.H. A pixel-wise calculation of soil evaporative efficiency with thermal/optical remote sensing and meteorological reanalysis data for downscaling microwave soil moisture. Agric. Water Manag. 2023, 276, 108063. [Google Scholar] [CrossRef]
- Wakigari, S.A.; Leconte, R. Exploring the utility of the downscaled SMAP soil moisture products in improving streamflow simulation. J. Hydrol. Reg. Stud. 2023, 47, 101380. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.A.; Liang, M.; Ma, J.F.; Yang, Y.Z.; Zheng, H. Impact of crop types and irrigation on soil moisture downscaling in water-stressed cropland regions. Environ. Impact Assess. Rev. 2023, 100, 7073. [Google Scholar] [CrossRef]
- Leng, P.; Yang, Z.; Yan, Q.Y.; Shang, G.F.; Zhang, X.; Han, X.J.; Li, Z.L. A framework for estimating all-weather fine resolution soil moisture from the integration of physics-based and machine learning-based algorithms. Comput. Electron. Agric. 2023, 206, 107673. [Google Scholar] [CrossRef]
- Judge, J.; Liu, P.W.; Monsiváis-Huertero, A.; Bongiovanni, T.; Chakrabarti, S.; Steele-Dunne, S.C.; Preston, D.; Allen, S.; Bermejo, J.P.; Rush, P.; et al. Impact of vegetation water content information on soil moisture retrievals in agricultural regions: An analysis based on the SMAPVEX16-MicroWEX dataset. Remote Sens. Environ. 2021, 265, 112623. [Google Scholar] [CrossRef]
- Tao, S.Y.; Zhang, X.; Feng, R.; Qi, W.C.; Wang, Y.B.; Shrestha, B. Retrieving soil moisture from grape growing areas using multi-feature and stacking-based ensemble learning modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- He, L.; Cheng, Y.; Li, Y.X.; Li, F.; Fan, K.L.; Li, Y.Z. An Improved Method for Soil Moisture Monitoring With Ensemble Learning Methods Over the Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2833–2844. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.-W.; Shi, J.-J.; Huang, J.-F. Soil Moisture Monitoring Based on Land Surface Temperature-Vegetation Index Space Derived from MODIS Data. Pedosphere 2014, 24, 450–460. [Google Scholar] [CrossRef]
- Bai, L.; Long, D.; Yan, L. Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land. Water Resour. Res. 2019, 55, 1105–1128. [Google Scholar] [CrossRef]
- Rawat, K.S.; Sehgal, V.K.; Singh, S.K.; Ray, S.S. Soil moisture estimation using triangular method at higher resolution from MODIS products—ScienceDirect. Phys. Chem. Earth Parts A/B/C 2022, 126, 103051. [Google Scholar] [CrossRef]
- Younis, S.M.; Iqbal, J. Estimation of soil moisture using multispectral and FTIR techniques. Egypt. J. Remote Sens. Space Sci. 2015, 18, 151–161. [Google Scholar] [CrossRef]
- Piles, M.; Camps, A.; Vall-llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3156–3166. [Google Scholar] [CrossRef]
- Zhang, W.; Koch, J.; Wei, F.L.; Zeng, Z.Z.; Fang, Z.X.; Fensholt, R. Soil Moisture and Atmospheric Aridity Impact Spatio-Temporal Changes in Evapotranspiration at a Global Scale. J. Geophys. Res. Atmos. 2023, 128, e2022JD038046. [Google Scholar] [CrossRef]
- Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K. Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images. Sci. Rep. 2023, 13, 2251. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine Learning to Estimate Surface Soil Moisture from Remote Sensing Data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Nolet, C.; Poortinga, A.; Roosjen, P.; Bartholomeus, H.; Ruessink, G. Measuring and Modeling the Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand. PLoS ONE 2014, 9, e112151. [Google Scholar] [CrossRef]
- Bowers, S.A.; Smith, S.J. Spectrophotometric Determination of Soil Water Content. Soil Sci. Soc. Am. J. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Robinove, C.J.; Chavez, P.S.; Gehring, D.; Holmgren, R. Arid land monitoring using Landsat albedo difference images. Remote Sens. Environ. 1981, 11, 133–156. [Google Scholar] [CrossRef]
- Knadel, M.; Castaldi, F.; Barbetti, R.; Ben-Dor, E.; Gholizadeh, A.; Lorenzetti, R. Mathematical techniques to remove moisture effects from visible-near-infrared-shortwave-infrared soil spectra-review. Appl. Spectrosc. Rev. 2023, 58, 629–662. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Rossel, R.A.V.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Watson, K. Regional Thermal-Inertia Mapping from an Experimental Satellite. Geophysics 1982, 47, 1681–1687. [Google Scholar] [CrossRef]
- Jackson, R.D. Soil Moisture Inferences from Thermal-Infrared Measurements of Vegetation Temperatures. IEEE Trans. Geosci. Remote Sens. 1982, GE-20, 282–286. [Google Scholar] [CrossRef]
- Leng, P.; Song, X.; Li, Z.-L.; Ma, J.; Zhou, F.; Li, S. Bare surface soil moisture retrieval from the synergistic use of optical and thermal infrared data. Int. J. Remote Sens. 2014, 35, 988–1003. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, S.; Piles, M.; Sánchez, N.; Martínez-Fernández, J.; Vall-llossera, M.; Camps, A. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. J. Hydrol. 2014, 516, 273–283. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Long, D.; Liu, B.; Qin, G.; Qin, J.; Batelaan, O. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method. Remote Sens. 2015, 7, 8250–8270. [Google Scholar] [CrossRef]
- Wu, X.J.; Wen, J. Recent Progress on Modeling Land Emission and Retrieving Soil Moisture on the Tibetan Plateau Based on L-Band Passive Microwave Remote Sensing. Remote Sens. 2022, 14, 4191. [Google Scholar] [CrossRef]
- Zheng, D.H.; Wang, X.; van der Velde, R.; Ferrazzoli, P.; Wen, J.; Wang, Z.L.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z.B. Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sens. Environ. 2018, 209, 633–647. [Google Scholar] [CrossRef]
- Mavrovic, A.; Sonnentag, O.; Lemmetyinen, J.; Baltzer, J.L.; Kinnard, C.; Roy, A. Reviews and syntheses: Recent advances in microwave remote sensing insupport of terrestrial carbon cycle science in Arctic-boreal regions. Biogeosciences 2023, 20, 2941–2970. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. A review of downscaling methods of satellite-based precipitation estimates. Earth Sci. Inform. 2022, 15, 1–20. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, W.; Wang, Q.; Xia, X. Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Adv. Water Resour. 2020, 141, 103601. [Google Scholar] [CrossRef]
- Zhao, H.F.; Li, J.; Yuan, Q.Q.; Lin, L.P.; Yue, L.W.; Xu, H.Z. Downscaling of soil moisture products using deep learning: Comparison and analysis on Tibetan Plateau. J. Hydrol. 2022, 607, 127570. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Kolassa, J.; Prigent, C.; Aires, F.; Gentine, P. Global downscaling of remotely sensed soil moisture using neural networks. Hydrol. Earth Syst. Sci. 2018, 22, 5341–5356. [Google Scholar] [CrossRef]
- Guevara, M.; Vargas, R. Downscaling satellite soil moisture using geomorphometry and machine learning. PLoS ONE 2019, 14, e0219639. [Google Scholar] [CrossRef]
- Cui, Y.K.; Chen, X.; Xiong, W.T.; He, L.; Lv, F.; Fan, W.J.; Luo, Z.L.; Hong, Y. A Soil Moisture Spatial and Temporal Resolution Improving Algorithm Based on Multi-Source Remote Sensing Data and GRNN Model. Remote Sens. 2020, 12, 455. [Google Scholar] [CrossRef]
- Sun, H.; Cui, Y.J. Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based on Machine Learning Method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
- Shangguan, Y.L.; Min, X.X.; Shi, Z. Inter-comparison and integration of different soil moisture downscaling methods over the Qinghai-Tibet Plateau. J. Hydrol. 2023, 617, 129014. [Google Scholar] [CrossRef]
- Hegazi, E.H.; Yang, L.B.; Huang, J.F. A Convolutional Neural Network Algorithm for Soil Moisture Prediction from Sentinel-1 SAR Images. Remote Sens. 2021, 13, 4964. [Google Scholar] [CrossRef]
- Rabiei, S.; Jalilvand, E.; Tajrishy, M. A Method to Estimate Surface Soil Moisture and Map the Irrigated Cropland Area Using Sentinel-1 and Sentinel-2 Data. Sustainability 2021, 13, 11355. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M. Comparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101888. [Google Scholar] [CrossRef]
- Yin, Q.; Li, J.L.; Zhou, Y.S.; Xiang, D.L.; Zhang, F. Adaptive weighted learning for vegetation contribution in soil moisture inversion using PolSAR data. Int. J. Remote Sens. 2022, 43, 3190–3215. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Park, S.; Rhee, J. AMSR2 soil moisture downscaling using multisensor products through machine learning approach. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Kshatri, S.S.; Singh, D.; Narain, B.; Bhatia, S.; Quasim, M.T.; Sinha, G.R. An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach. IEEE Access 2021, 9, 67488–67500. [Google Scholar] [CrossRef]
- Das, B.; Rathore, P.; Roy, D.; Chakraborty, D.; Jatav, R.S.; Sethi, D.; Kumar, P. Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. Catena 2022, 217, 106485. [Google Scholar] [CrossRef]
- Wang, L.G.; Gao, Y. Soil Moisture Retrieval From Sentinel-1 and Sentinel-2 Data Using Ensemble Learning Over Vegetated Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1802–1814. [Google Scholar] [CrossRef]
- Breiman, L.; Cutler, R.A.; Cutler, S. RandomForests™. An Implementation of Leo Breiman’s RF™ by Salford Systems. 2004. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/ (accessed on 18 January 2024).
- Meng, Q. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 52. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Zhang, X.; Zhou, J.; Göttsche, F.M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.Y.; Zhu, Z.Y.; Li, X.M.; Asrar, G.R. A global seamless 1 km resolution daily land surface temperature dataset (2003–2020). Earth Syst. Sci. Data 2022, 14, 651–664. [Google Scholar] [CrossRef]
- Wang, S.A.; Wu, Y.J.; Li, R.P.; Wang, X.Q. Remote sensing-based retrieval of soil moisture content using stacking ensemble learning models. Land Degrad. Dev. 2023, 34, 911–925. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB. Digit. Image Process. Using Matlab 2010, 21, 197–199. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Publishing House of Electronics Industry: Beijing, China, 2004. [Google Scholar]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Yigrem, Y.; MMelesse, A. Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Sensors 2020, 20, 3282. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, X.L.; Chen, Q.; Sun, G.C.; Yao, J.C. Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model. Remote Sens. 2020, 12, 1844. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Yeo, I.Y.; Walker, J.P.; Willgoose, G.R. Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. Sci. Total Environ. 2021, 776, 145924. [Google Scholar] [CrossRef]
- Muzalevskiy, K.; Zeyliger, A. Application of Sentinel-1B Polarimetric Observations to Soil Moisture Retrieval Using Neural Networks: Case Study for Bare Siberian Chernozem Soil. Remote Sens. 2021, 13, 3480. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Notaro, M.; Wang, F.; Yu, Y. Elucidating observed land surface feedbacks across sub-Saharan Africa. Clim. Dyn. 2019, 53, 1741–1763. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; Fang, G.; Duan, W.; Li, Y.; De Maeyer, P. Quantifying the Eects of Climate and Vegetation on Soil Moisture in an Arid Area, China. Water 2019, 11, 767. [Google Scholar] [CrossRef]
- Khellouk, R.; Barakat, A.; Boudhar, A.; Hadria, R.; Lionboui, H.; El Jazouli, A.; Rais, J.; El Baghdadi, M.; Benabdelouahab, T. Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: A case study in a semi-arid area. J. Spat. Sci. 2020, 65, 481–499. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Chen, N.; Ma, H.; Zeng, J.; Fu, P.; Nam, W.-H.; Niyogi, D. Generating high-accuracy and cloud-free surface soil moisture at 1 km resolution by point-surface data fusion over the Southwestern U.S. Agric. For. Meteorol. 2022, 321, 108985. [Google Scholar] [CrossRef]
Product | Parameters | Spatial Resolution |
---|---|---|
MOD09A1 | SR | 500 m/8 days |
MOD13A2 | NDVI | 1 km/16 days |
MOD11A2 | LST | 1 km/8 days |
MOD16A2 | ET | 500 m |
MCD12Q1 | Land cover type | 500 m |
ASTER GDEM | Aspect Slope DEM | 30 m |
ESA-CCI | SM | 25 km/daily |
MOD09A1 | SR | 500 m/8 days |
MOD13A2 | NDVI | 1 km/16 days |
MOD11A2 | LST | 1 km/8 days |
MOD16A2 | ET | 500 m |
MCD12Q1 | Land cover type | 500 m |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Time | MAE(m3/m3) | RMSE(m3/m3) | PCC | MAE(m3/m3) | RMSE(m3/m3) | PCC |
9 May 2018 | 0.004 | 0.005 | 0.129 | 0.002 | 0.003 | 0.188 |
25 May 2018 | 0.005 | 0.007 | 0.042 | 0.003 | 0.004 | 0.490 |
10 June 2018 | 0.002 | 0.002 | −0.116 | 0.001 | 0.002 | 0.007 |
26 June 2018 | 0.004 | 0.005 | −0.013 | 0.004 | 0.005 | 0.503 |
12 July 2018 | 0.003 | 0.004 | 0.021 | 0.005 | 0.006 | 0.366 |
28 July 2018 | 0.004 | 0.005 | 0.009 | 0.005 | 0.006 | −0.163 |
13 August 2018 | 0.004 | 0.004 | 0.074 | 0.003 | 0.004 | 0.341 |
29 August 2018 | 0.005 | 0.005 | −0.131 | 0.009 | 0.012 | 0.310 |
14 September 2018 | 0.004 | 0.004 | 0.097 | 0.003 | 0.004 | 0.000 |
30 September 2018 | 0.005 | 0.006 | 0.095 | 0.007 | 0.009 | −0.049 |
9 May 2019 | 0.006 | 0.007 | −0.106 | 0.003 | 0.004 | −0.376 |
25 May 2019 | 0.003 | 0.005 | 0.031 | 0.004 | 0.005 | 0.133 |
10 June 2019 | 0.004 | 0.005 | −0.096 | 0.003 | 0.004 | 0.426 |
26 June 2019 | 0.002 | 0.003 | −0.006 | 0.006 | 0.009 | 0.090 |
12 July 2019 | 0.004 | 0.005 | −0.066 | 0.002 | 0.003 | 0.139 |
28 July 2019 | 0.008 | 0.021 | 0.274 | 0.003 | 0.003 | 0.459 |
13 August 2019 | 0.004 | 0.006 | −0.054 | 0.003 | 0.004 | −0.077 |
29 August 2019 | 0.006 | 0.022 | 0.106 | 0.003 | 0.004 | 0.185 |
14 September 2019 | 0.006 | 0.019 | 0.152 | 0.004 | 0.004 | 0.125 |
30 September 2019 | 0.006 | 0.017 | 0.180 | 0.006 | 0.008 | 0.128 |
9 May 2020 | 0.007 | 0.021 | 0.011 | 0.008 | 0.010 | 0.157 |
25 May 2020 | 0.006 | 0.022 | 0.089 | 0.003 | 0.004 | 0.396 |
10 June 2020 | 0.004 | 0.005 | 0.118 | 0.002 | 0.002 | 0.042 |
26 June 2020 | 0.002 | 0.002 | 0.024 | 0.005 | 0.007 | −0.118 |
12 July 2020 | 0.004 | 0.004 | 0.016 | 0.002 | 0.002 | 0.388 |
28 July 2020 | 0.003 | 0.003 | −0.070 | 0.003 | 0.004 | 0.039 |
13 August 2020 | 0.003 | 0.004 | −0.068 | 0.004 | 0.005 | −0.196 |
29 August 2020 | 0.004 | 0.005 | −0.07 | 0.003 | 0.004 | −0.268 |
14 September 2020 | 0.003 | 0.004 | 0.065 | 0.002 | 0.003 | −0.025 |
30 September 2020 | 0.003 | 0.004 | 0.012 | 0.003 | 0.004 | −0.001 |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Time | MAE(m3/m3) | RMSE(m3/m3) | PCC | MAE(m3/m3) | RMSE(m3/m3) | PCC |
9 May 2018 | 0.008 | 0.010 | 0.814 | 0.004 | 0.005 | 0.953 |
25 May 2018 | 0.010 | 0.020 | 0.584 | 0.006 | 0.018 | 0.698 |
10 June 2018 | 0.008 | 0.017 | 0.180 | 0.006 | 0.018 | 0.698 |
26 June 2018 | 0.010 | 0.021 | 0.587 | 0.004 | 0.005 | 0.958 |
12 July 2018 | 0.010 | 0.024 | 0.429 | 0.005 | 0.006 | 0.835 |
28 July 2018 | 0.007 | 0.010 | 0.870 | 0.006 | 0.008 | 0.892 |
13 August 2018 | 0.011 | 0.026 | 0.388 | 0.006 | 0.007 | 0.891 |
29 August 2018 | 0.006 | 0.009 | 0.890 | 0.006 | 0.008 | 0.925 |
14 September 2018 | 0.012 | 0.025 | 0.332 | 0.003 | 0.004 | 0.973 |
30 September 2018 | 0.008 | 0.010 | 0.882 | 0.005 | 0.006 | 0.963 |
9 May 2018 | 0.011 | 0.021 | 0.768 | 0.004 | 0.006 | 0.974 |
25 May 2019 | 0.010 | 0.023 | 0.471 | 0.003 | 0.004 | 0.973 |
10 June 2019 | 0.007 | 0.009 | 0.866 | 0.005 | 0.006 | 0.931 |
26 June 2019 | 0.006 | 0.008 | 0.792 | 0.004 | 0.005 | 0.821 |
12 July 2019 | 0.006 | 0.007 | 0.761 | 0.004 | 0.005 | 0.629 |
28 July 2019 | 0.007 | 0.009 | 0.794 | 0.003 | 0.004 | 0.979 |
13 August 2019 | 0.011 | 0.024 | 0.509 | 0.005 | 0.006 | 0.911 |
29 August 2019 | 0.006 | 0.008 | 0.846 | 0.004 | 0.005 | 0.948 |
14 September 2019 | 0.005 | 0.008 | 0.837 | 0.002 | 0.003 | 0.974 |
30 September 2019 | 0.008 | 0.010 | 0.882 | 0.005 | 0.006 | 0.963 |
9 May 2020 | 0.011 | 0.021 | 0.768 | 0.004 | 0.004 | 0.979 |
25 May 2020 | 0.011 | 0.025 | 0.403 | 0.003 | 0.005 | 0.972 |
10 June 2020 | 0.005 | 0.007 | 0.833 | 0.003 | 0.004 | 0.962 |
26 June 2020 | 0.010 | 0.024 | 0.139 | 0.003 | 0.004 | 0.825 |
12 July 2020 | 0.009 | 0.012 | 0.744 | 0.006 | 0.007 | 0.848 |
28 July 2020 | 0.011 | 0.025 | 0.426 | 0.003 | 0.004 | 0.938 |
13 August 2020 | 0.010 | 0.024 | 0.35 | 0.002 | 0.003 | 0.979 |
29 August 2020 | 0.006 | 0.009 | 0.915 | 0.002 | 0.003 | 0.990 |
14 September 2020 | 0.01 | 0.012 | 0.678 | 0.003 | 0.004 | 0.977 |
30 September 2020 | 0.008 | 0.011 | 0.807 | 0.005 | 0.006 | 0.924 |
ESACI SM & In Situ SM | Estimated SM & In Situ SM | |||
---|---|---|---|---|
Time | Bais (m3/m3) | RMSE (m3/m3) | Bais (m3/m3) | RMSE (m3/m3) |
9 May 2019 | 0.151 | 0.015 | 0.290 | 0.019 |
25 May 2019 | 0.034 | 0.006 | 0.060 | 0.009 |
10 June 2019 | 0.055 | 0.007 | 0.023 | 0.005 |
26 June 2019 | 0.056 | 0.009 | 0.005 | 0.002 |
12 July 2019 | 0.055 | 0.009 | 0.002 | 0.002 |
28 July 2019 | 0.06 | 0.008 | 0.035 | 0.007 |
13 August 2019 | 0.055 | 0.009 | 0.020 | 0.005 |
29 August 2019 | 0.024 | 0.013 | 0.020 | 0.005 |
14 September 2019 | 0.013 | 0.007 | 0.064 | 0.008 |
30 September 2019 | 0.069 | 0.008 | 0.042 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Gao, Y. Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China. Remote Sens. 2025, 17, 716. https://doi.org/10.3390/rs17040716
Wang L, Gao Y. Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China. Remote Sensing. 2025; 17(4):716. https://doi.org/10.3390/rs17040716
Chicago/Turabian StyleWang, Liguo, and Ya Gao. 2025. "Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China" Remote Sensing 17, no. 4: 716. https://doi.org/10.3390/rs17040716
APA StyleWang, L., & Gao, Y. (2025). Estimating and Downscaling ESA-CCI Soil Moisture Using Multi-Source Remote Sensing Images and Stacking-Based Ensemble Learning Algorithms in the Shandian River Basin, China. Remote Sensing, 17(4), 716. https://doi.org/10.3390/rs17040716