A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Phytoplankton Absorption Coefficient Inversion
2.2.2. Red Tide Extraction Algorithm
3. Results
4. Discussion
4.1. Changes in Red Tide Distribution
4.2. Algorithm for Identifying Dominant Algal Species in Red Tide
4.3. Advantages of the Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Ding, M. Biology of Marine Pollution; China Ocean Press: Beijing, China, 1991. [Google Scholar]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef]
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquacult. 2020, 12, 1663–1688. [Google Scholar] [CrossRef]
- GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms Science Plan. Baltimore and Paris: SOR and IOC; Springer: Berlin/Heidelberg, Germany, 2001; p. 86. [Google Scholar]
- Zhou, M.; Zhu, M. Progress of the Project “Ecological and Oceanography of Harmful Algal Blooms in China”. Adv. Earth. Sci. 2006, 21, 673–679. [Google Scholar] [CrossRef]
- Bergman, B.; Sandh, G.; Lin, S.; Larsson, J.; Carpenter, E.J. Trichodesmium—A widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013, 37, 286–302. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth. Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
- Anderson, C.R.; Berdalet, E.; Kudela, R.M.; Cusack, C.K.; Silke, J.; Rourke, E.O.; Dugan, D.; McCammon, M.; Newton, J.A.; Moore, S.K.; et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 2019, 6, 250. [Google Scholar] [CrossRef]
- Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153. [Google Scholar] [CrossRef]
- Wells, M.L.; Karlson, B.; Wulff, A.; Kudela, R.; Trick, C.; Asnaghi, V.; Berdalet, E.; Cochlan, W.; Davidson, K.; Rijcke, M.D.; et al. Future HAB science: Directions and challenges in a changing climate. Harmful. Algae 2020, 91, 101632. [Google Scholar] [CrossRef]
- Tester, P.A.; Stumpf, R.P. Phytoplankton blooms and remote sensing: What is the potential for early warning. J. Shellfish Res. 1998, 17, 1469–1471. [Google Scholar]
- Sumpf, R.P.; Culver, M.E.; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco, M. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful. Algae 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. ISPRS. J. Photogramm. 2015, 101, 125–136. [Google Scholar] [CrossRef]
- IOCCG. Observation of Harmful Algal Blooms with Ocean Colour Radiometry; Bernard, S., Kudela, R., Robertson, L.L., Pitcher, G.C., Eds.; IOCCG Report Series, No. 20; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2021. [Google Scholar]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Platt, T.; Hoepffner, N.; Stuart, V.; Brown, C.C. Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology. Reports of the International Ocean-Colour Coordinating Group (IOCCG); IOCCG: Dartmouth, NS, Canada, 2008. [Google Scholar]
- Avinash, K.; Jena, B.; Vinaya, M.S.; Jayappa, K.S.; Narayana, A.C.; Bhat, H.G. Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 ocean color monitor data. Egypt. J. Remote Sens. 2012, 15, 67–81. [Google Scholar] [CrossRef]
- Lei, H. The Remote Sensing Algorithm of HAB Extraction Based on Inherent Optical Properties in East China Sea. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Qiu, Z.; Cui, T.; He, Y. Retrieve of red tide distribution from MODIS data based on the characteristics of water spectrum. Spectrosc. Spectra. Anal. 2011, 31, 2233–2237. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Lewis, M.R.; Cullen, J.J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient. Limnol. Oceanogr. 2002, 47, 404–417. [Google Scholar] [CrossRef]
- Bricaud, A.; Mejia, C.; Blondeau-Patissier, D.B.; Claustre, H.; Crepon, M.; Thiria, S. Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Appl. Opt. 2007, 46, 1251–1260. [Google Scholar] [CrossRef]
- Marra, J.; Trees, C.C.; O’Reilly, J.E. Phytoplankton pigment absorption: A strong predictor of primary productivity in the surface ocean. Deep-Sea. Res. Pt. I 2007, 54, 155–163. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia 2009, 619, 27–37. [Google Scholar] [CrossRef]
- Costa, G.P.; Icely, J.; Cristina, S.; Newton, A.; Moore, G.; Cordeiro, C. Specific absorption coefficient of phytoplankton off the southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing. Cont. Shelf. Res. 2013, 52, 119–132. [Google Scholar] [CrossRef]
- Craig, S.E.; Lohrenz, S.E.; Lee, Z.; Mahoney, K.L.; Kirkpatrick, G.J.; Schofield, O.M.; Steward, R.G. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Appl. Opt. 2006, 45, 5414–5425. [Google Scholar] [CrossRef] [PubMed]
- Neukermans, G.; Ruddick, K.; Bernarad, E.; Ramon, D.; Nechad, B.; Deschamps, P.Y. Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea. Opt. Express 2009, 17, 14029–14052. [Google Scholar] [CrossRef]
- Gernez, P.; Antoine, D.; Huot, Y. Diel cycles of the particulate beam attenuation coefficient under varying trophic conditionsin the northeastern Mediterranean Sea: Observations and modeling. Limnol. Oceanogr. 2011, 56, 17–36. [Google Scholar] [CrossRef]
- Lee, Z.P.; Carder, K.L.; Arnone, R. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Darecki, M.; Stramski, D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
Date | Location | Dominant Species | Area in the Bulletin (km2) | Identified Area (km2) | Absolute Error (km2) | Composite Relative Error (%) |
---|---|---|---|---|---|---|
13 May 2011–4 June 2011 | Shiping Cangnan, Wenzhou, Zhejiang Province | Prorocentrum donghaiensis (PD) | 200 | 310.7826 | 110.7826 | 35.65 |
26 July 2011–7 August 2011 | South of Crocodile Island, the middle of Jimei Bridge, and the Wuyuan Bay Bridge, Xiamen | Skeletonema costatum (SC) | 105 | 187.1204 | 82.1204 | 43.89 |
24 May 2012–3 June 2012 | Dongtou Island, Wenzhou | Karenia mikimotoi (KM), PD | 40 | 33.597 | 6.403 | 16.01 |
3–7 June 2012 | Sheng Si, Zhou Shan | KM, PD | 240 | 254.14 | 14.14 | 5.56 |
18 May 2012–7 June 2012 | Xiapu and Fuding, Sansha Bay Ningde | KM | 130 | 112.0516 | 17.9484 | 13.81 |
27 May–8 June 2012 | Huangqi Lianjiang, Fuzhou | KM | 40 | 60.75852 | 20.75852 | 34.17 |
30 May 2012–8 June 2012 | Donghan Fuqing, Fuzhou | KM | 6 | 9.93257 | 3.93257 | 39.59 |
5–8 June 2012 | Jibi to Xinwo in Bili Township, Luoyuan, Fuzhou | KM | 10 | 4.090333 | 5.909667 | 59.10 |
26 May 2012–7 June 2012 | Pingtan waters | KM | 80 | 33.20033 | 46.79967 | 58.50 |
30 May 2012–3 June 2012 | East of Putian, Kengkou, Stone City, Yanyu, Meizhou Island | KM | 32 | 31.17833 | 0.82167 | 2.57 |
30 May 2012–2 June 2012 | Xiaoyu, Huian, Quanzhou | KM | 7 | 4.371415 | 2.628585 | 37.55 |
13–29 May 2013 | Cangnan, Wenzhou | PD | 450 | 238.7144 | 211.2856 | 46.95 |
18 May–2 June 2013 | Kanmen, Yuhuan, Taizhou | PD | 120 | 228.9723 | 108.9723 | 47.59 |
20–24 May 2013 | Southeast of Jiushan Island, Ningbo | PD | 140 | 160.9563 | 20.9563 | 13.02 |
3–9 June 2013 | Dongfu Island, Zhoushan | PD | 100 | 129.501 | 29.501 | 22.78 |
21 May 2014–5 June 2014 | Shengsi, Zhoushan | PD | 170 | 76.852 | 93.148 | 54.79 |
21 May 2014–3 June 2014 | Putuo, Zhoushan | PD | 300 | 41.1944 | 258.8056 | 86.27 |
19 May 2014–11 June 2014 | Cangnan, Wenzhou | PD | 320 | 230.5109 | 89.4891 | 27.97 |
26 April 2015–3 May 2015 | Yushan Islands | PD | 200 | 92.748 | 107.252 | 53.63 |
12–21 June 2015 | Nanji, Wenzhou | Gonyaulax polygramma (GP) | 390 | 384.043 | 5.957 | 1.53 |
26 May 2015–2 June 2015 | Guzhen, Xiapu | KM, PD | 100 | 5.752 | 94.248 | 94.25 |
17–20 May 2016 | East of the Yangtze River Estuary | PD | 820 | 817.4081 | 2.5919 | 0.32 |
16–21 August 2016 | Yangtze River Estuary | PD | 2000 | 2171.377 | 171.377 | 7.89 |
9–12 May 2016 | East of Flower and Bird Mountain, Shengsi, Zhoushan | PD | 470 | 521.6767 | 51.6767 | 9.91 |
12–16 May 2016 | Southeast of Zhujiajian, Zhoushan | PD | 200 | 280.1863 | 80.1863 | 28.62 |
12–22 May 2016 | Yushan Islands to Dantou Mountain | PD | 480 | 347.0258 | 132.9742 | 27.70 |
16–21 May 2016 | Shengshan sea area, Zhoushan | PD | 120 | 241.2728 | 121.2728 | 50.26 |
22–30 May 2016 | Aojiang River Estuary to Xiaguan, Cangnan | PD | 100 | 158.9718 | 58.9718 | 37.10 |
5–14 July 2016 | East sea of Zhujiajian, Zhoushan | Chaetoceros compressus (CC) | 100 | 241.8425 | 141.8425 | 58.65 |
18–21 July 2016 | Shengshan to Flower and Bird Mountain, Zhoushan | PD | 350 | 487.8534 | 137.8534 | 28.26 |
24–27 July 2016 | Southeast of Zhujiajian, Zhoushan | Mesodinium rubrum (MR) | 150 | 164.2896 | 14.2896 | 8.70 |
8–11 August 2016 | Southeast of Shengshan | PD | 200 | 617.1895 | 417.1895 | 67.60 |
20–24 May 2017 | Yushan waters | PD | 220 | 41.06433 | 178.9357 | 81.33 |
20–24 May 2017 | Yushan Islands to the middle of Tantoushan | Karenia brevis (KB), KM, Gonyaulax spinifera (GS), Scrippsiella trochoidea (ST), Ceratium tripus (CT), Pseudo-nitzschia pungens (PP) | 420 | 372.4239 | 47.5761 | 11.33 |
20–30 June 2017 | West of Nanjiushan | KB, KM | 120 | 138.3143 | 18.3143 | 13.24 |
27–30 June 2017 | Outside of Luoyu Island and Pishan, Yuhuan Island | KM | 300 | 190.9737 | 109.0263 | 36.34 |
7–11 July 2017 | East of Zhujiajiao, Zhoushan | Skeletonema costatum (SC) | 100 | 249.9555 | 149.9555 | 59.99 |
7–9 August 2018 | Dasong Estuary to Xihu Port, Xiangshan | Chaetoceros curvisetus (CC) | 120 | 94.89789 | 25.10211 | 20.92 |
9–15 August 2018 | East of Zhujiajian to Peach Blossom Island | Skeletonema costatum (SC) | 150 | 231.4371 | 81.4371 | 35.19 |
9–15 August 2018 | Huangxing Island to Dongfushan, Zhoushan | Leptocylindrus danicus (LD) | 150 | 190.6636 | 40.6636 | 21.33 |
9 May 2019–11 June 2019 | East of Nanji Island to Beiji Island to Dongtou Island | PD | 800 | 136.501 | 663.499 | 82.94 |
15–28 May 2019 | Ningbo, Yushan | PD, Noctiluca scintillans | 200 | 250.5753 | 50.5733 | 20.18 |
30 July 2019–2 August 2019 | East of Putuo Mountain, Zhoushan | Chaetoceros brevis | 100 | 204.2495 | 104.2495 | 51.04 |
28 April 2020–20 May 2020 | East of Nanji to Dongtou to Wenling | PD | 380 | 493.9996 | 113.9996 | 23.08 |
29 April 2020–27 May 2020 | Shipu, Wenzhou to Yushan | PD | 380 | 300.208 | 79.792 | 21.00 |
14–19 May 2020 | Southeast of Jigushan, Wenling | PD | 100 | 126.889 | 26.889 | 21.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Huang, Y.; Chen, J.; Zeng, Z. A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI). Remote Sens. 2025, 17, 750. https://doi.org/10.3390/rs17050750
Xu X, Huang Y, Chen J, Zeng Z. A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI). Remote Sensing. 2025; 17(5):750. https://doi.org/10.3390/rs17050750
Chicago/Turabian StyleXu, Xiaohui, Yaqin Huang, Jian Chen, and Zhi Zeng. 2025. "A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI)" Remote Sensing 17, no. 5: 750. https://doi.org/10.3390/rs17050750
APA StyleXu, X., Huang, Y., Chen, J., & Zeng, Z. (2025). A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI). Remote Sensing, 17(5), 750. https://doi.org/10.3390/rs17050750