Mapping Wind Turbine Distribution in Forest Areas of China Using Deep Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Satellite Imagery and Other Datasets
2.2.2. Image Processing
2.3. Data Analyses
2.3.1. Workflow
2.3.2. Model Construction
- (1)
- Box loss
- (2)
- Classification loss
- (3)
- Distribution focal loss
- (4)
- Keypoint objectness loss
- (5)
- Keypoint loss
2.3.3. Strategies for Training and Post-Processing
2.3.4. Accuracy Assessment
3. Results
3.1. Accuracy Assessment Results
3.2. Spatial Distribution of Wind Turbines
3.3. Analysis of Spatial Distribution Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Resonant Waves Play an Important Role in the Increasing Heat Waves in Northern Hemisphere Mid-Latitudes Under Global Warming. Geophys. Res. Lett. 2023, 50, e2023GL104839. [Google Scholar] [CrossRef]
- Neal, E.; Huang, C.S.Y.; Nakamura, N. The 2021 Pacific Northwest Heat Wave and Associated Blocking: Meteorology and the Role of an Upstream Cyclone as a Diabatic Source of Wave Activity. Geophys. Res. Lett. 2022, 49, e2021GL097699. [Google Scholar] [CrossRef]
- IEA. Renewables 2024; IEA: Paris, France, 2024. [Google Scholar]
- Statistics on the National Power Industry from January to July 2024. Available online: https://www.nea.gov.cn/2024-08/23/c_1310785026.htm (accessed on 24 September 2024).
- Li, Y.; Tang, X.; Liu, M.; Chen, G. The benefits and burdens of wind power systems in reaching China’s renewable energy goals: Implications from resource and environment assessment. J. Clean. Prod. 2024, 481, 144134. [Google Scholar] [CrossRef]
- Development Research Centre of the State Council; Sheel International Limited. Embracing the Future, Powering Growth: An Energy System Renewed for China; China Development Press: Beijing, China, 2024. [Google Scholar]
- Virah-Sawmy, D.; Sturmberg, B. Socio-economic and environmental impacts of renewable energy deployments: A review. Renew. Sustain. Energy Rev. 2025, 207, 114956. [Google Scholar] [CrossRef]
- Msigwa, G.; Ighalo, J.O.; Yap, P.S. Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives. Sci. Total Environ. 2022, 849, 157755. [Google Scholar] [CrossRef]
- Wu, D.; Grodsky, S.M.; Xu, W.; Liu, N.; Almeida, R.M.; Zhou, L.; Miller, L.M.; Roy, S.B.; Xia, G.; Agrawal, A.A.; et al. Observed impacts of large wind farms on grassland carbon cycling. Sci. Bull. 2023, 68, 2889–2892. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, S.; Wang, Y. Assessing the technical and economic potential of wind and solar energy in China—A provincial-scale analysis. Environ. Impact Assess. Rev. 2023, 102, 107161. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Guo, S.; Zhang, X.; Pan, X.; Fang, H.; Chen, R.; Du, P. Assessment of forest disturbance and soil erosion in wind farm project using satellite observations. Resour. Conserv. Recycl. 2025, 212, 107934. [Google Scholar] [CrossRef]
- Ma, B.; Yang, J.; Chen, X.; Zhang, L.; Zeng, W. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: A case study of a typical wind farm in Yunnan. J. Clean. Prod. 2023, 419, 138020. [Google Scholar] [CrossRef]
- Kati, V.; Kassara, C.; Vrontisi, Z.; Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 2021, 768, 144471. [Google Scholar] [CrossRef] [PubMed]
- Kumara, H.N.; Babu, S.; Rao, G.B.; Mahato, S.; Bhattacharya, M.; Rao, N.V.R.; Tamiliniyan, D.; Parengal, H.; Deepak, D.; Balakrishnan, A.; et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 2022, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
- Neugarten, R.A.; Chaplin-Kramer, R.; Sharp, R.P.; Schuster, R.; Strimas-Mackey, M.; Roehrdanz, P.R.; Mulligan, M.; van Soesbergen, A.; Hole, D.; Kennedy, C.M.; et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 2024, 15, 261. [Google Scholar] [CrossRef] [PubMed]
- Herfort, B.; Lautenbach, S.; Porto de Albuquerque, J.; Anderson, J.; Zipf, A. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nat. Commun. 2023, 14, 3985. [Google Scholar] [CrossRef]
- Engert, J.E.; Campbell, M.J.; Cinner, J.E.; Ishida, Y.; Sloan, S.; Supriatna, J.; Alamgir, M.; Cislowski, J.; Laurance, W.F. Ghost roads and the destruction of Asia-Pacific tropical forests. Nature 2024, 629, 370–375. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Zhang, N.; Zhang, Y.; Zhao, Z.; Xu, D.; Ben, G.; Gao, Y. Deep Learning-Based Object Detection Techniques for Remote Sensing Images: A Survey. Remote Sens. 2022, 14, 2385. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Proc. Adv. Neural Inf. Process. Syst. 2012, 60, 1097–1105. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; pp. 1–21. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics, version 7.0; 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 15 September 2024).
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8, version 8.0.0; 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 8 August 2024).
- Wang, C.; He, W.; Nie, Y.; Guo, J.; Liu, C.; Han, K.; Wang, Y. Gold-YOLO: Efficient object detector via gather-and-distribute mechanism. In Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 51094–51112. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. DETRs Beat YOLOs on Real-time Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 16965–16974. [Google Scholar]
- Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. RTMDet: An Empirical Study of Designing Real-Time Object Detectors. arXiv 2022, arXiv:2212.07784. [Google Scholar]
- Paolo, F.S.; Kroodsma, D.; Raynor, J.; Hochberg, T.; Davis, P.; Cleary, J.; Marsaglia, L.; Orofino, S.; Thomas, C.; Halpin, P. Satellite mapping reveals extensive industrial activity at sea. Nature 2024, 625, 85–91. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Fensholt, R.; Jensen, P.R.D.; Li, S.; Larsen, M.N.; Reiner, F.; Tian, F.; Brandt, M. Global area boom for greenhouse cultivation revealed by satellite mapping. Nat. Food 2024, 5, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, C.; Gu, X.; Duporge, I.; Hughey, L.F.; Stabach, J.A.; Skidmore, A.K.; Hopcraft, J.G.C.; Lee, S.J.; Atkinson, P.M.; et al. Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape. Nat. Commun. 2023, 14, 3072. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Liu, L.; Liu, Z.; Wu, H. Monitoring global cement plants from space. Remote Sens. Environ. 2024, 302, 113954. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Guo, S.; Chen, R.; Zhang, W.; Guo, X.; Zhang, X.; Du, P. Satellites Reveal Spatial Heterogeneity in Dryland Photovoltaic Plants’ Effects on Vegetation Dynamics. Earth’s Future 2024, 12, e2024EF004427. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, B.; Sengupta, D.; Zhang, L.; Si, Y. Global offshore wind turbine dataset. Sci. Data 2021, 8, 191. [Google Scholar] [CrossRef]
- Hoeser, T.; Feuerstein, S.; Kuenzer, C. DeepOWT: A global offshore wind turbine data set derived with deep learning from Sentinel-1 data. Earth Syst. Sci. Data 2022, 14, 4251–4270. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, H.; Wang, Y.; Wang, X.; Xue, S.; Liu, W. Dynamic detection of offshore wind turbines by spatial machine learning from spaceborne synthetic aperture radar imagery. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 1674–1686. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Han, L.; Zhu, L. How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery? Remote Sens. 2020, 12, 417. [Google Scholar] [CrossRef]
- Manso-Callejo, M.-Á.; Cira, C.-I.; Alcarria, R.; Arranz-Justel, J.-J. Optimizing the Recognition and Feature Extraction of Wind Turbines through Hybrid Semantic Segmentation Architectures. Remote Sens. 2020, 12, 3743. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, X.; Cao, X.; Cui, X. Identifying wind turbines from multiresolution and multibackground remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103613. [Google Scholar] [CrossRef]
- Manso-Callejo, M.-Á.; Cira, C.-I.; Garrido, R.P.A.; Matesanz, F.J.G. First Dataset of Wind Turbine Data Created at National Level With Deep Learning Techniques From Aerial Orthophotographs With a Spatial Resolution of 0.5 M/Pixel. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7968–7980. [Google Scholar] [CrossRef]
- Wang, K.; Xiao, W.; He, T.; Zhang, M. Remote sensing unveils the explosive growth of global offshore wind turbines. Renew. Sustain. Energy Rev. 2024, 191, 114186. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The first 1-meter resolution national-scale land-cover map of China created with the deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 2023, 4749–4780. [Google Scholar] [CrossRef]
- Jilin-1 Satellite RS Image Tiles Kit. Available online: https://www.jl1mall.com/rskit/ (accessed on 29 January 2024).
- Chen, Y.; Feng, X.; Fu, B.; Ma, H.; Zohner, C.M.; Crowther, T.W.; Huang, Y.; Wu, X.; Wei, F. Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years. Earth Syst. Sci. Data 2023, 15, 897–910. [Google Scholar] [CrossRef]
- Dunnett, S.; Sorichetta, A.; Taylor, G.; Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 2020, 7, 130. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 3 January 2023).
- Global Energy Monitor. Global Wind Power Tracker, version June 2024. Available online: https://globalenergymonitor.org/projects/global-wind-power-tracker/ (accessed on 7 August 2024).
- Davis, N.N.; Badger, J.; Hahmann, A.N.; Hansen, B.O.; Mortensen, N.G.; Kelly, M.; Larsén, X.G.; Olsen, B.T.; Floors, R.; Lizcano, G.; et al. The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application. Bull. Am. Meteorol. Soc. 2023, 104, E1507–E1525. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 2024, 16, 1353–1381. [Google Scholar] [CrossRef]
- Wada, K. Labelme, v5.5.0; Github: San Francisco, CA, USA, 2018; Available online: https://github.com/wkentaro/labelme (accessed on 9 July 2024).
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- Lv, W.; Zhao, Y.; Chang, Q.; Huang, K.; Wang, G.; Liu, Y. RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer. arXiv 2024, arXiv:2407.17140. [Google Scholar]
- Dollár, P.; Singh, M.; Girshick, R. Fast and Accurate Model Scaling. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 924–932. [Google Scholar]
- Tian, Y.; Su, D.; Lauria, S.; Liu, X. Recent advances on loss functions in deep learning for computer vision. Neurocomputing 2022, 497, 129–158. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; pp. 21002–21012. [Google Scholar]
- Keypoint Evaluation. Available online: https://cocodataset.org/#keypoints-eval (accessed on 15 December 2024).
- Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.V.; Hiernaux, P.; Diouf, A.A.; et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Herfort, B.; Lautenbach, S.; Porto de Albuquerque, J.; Anderson, J.; Zipf, A. The evolution of humanitarian mapping within the OpenStreetMap community. Sci. Rep. 2021, 11, 3037. [Google Scholar] [CrossRef]
- Mandroux, N.; Drouyer, S.; Grompone von Gioi, R. Multi-date wind turbine detection on optical satellite images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-2-2022, 383–390. [Google Scholar] [CrossRef]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Change Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wu, Q.; Qiu, J.; Mei, Y.; Yao, Y.; Meng, L.; Liu, P. The impact of wind energy on plant biomass production in China. Sci. Rep. 2023, 13, 22366. [Google Scholar] [CrossRef] [PubMed]
- Rehling, F.; Delius, A.; Ellerbrok, J.; Farwig, N.; Peter, F. Wind turbines in managed forests partially displace common birds. J. Environ. Manag. 2023, 328, 116968. [Google Scholar] [CrossRef]
- Skarin, A.; Nellemann, C.; Rönnegård, L.; Sandström, P.; Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 2015, 30, 1527–1540. [Google Scholar] [CrossRef]
- Institute for Carbon Neutrality of Tsinghua University; School of Environment of Tsinghua University; Energy Foundation. Technology Outlook on Wind and Solar Power Toward China’s Carbon Neutrality Goal; Institute of Carbon Neutrality, Tsinghua University: Beijing, China, 2024. [Google Scholar]
- Zhang, Y.; Ye, M.; Zhu, G.; Liu, Y.; Guo, P.; Yan, J. FFCA-YOLO for Small Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5611215. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Xie, W.; Fang, Z.; Li, Y.; Du, Q. SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5605415. [Google Scholar] [CrossRef]
- Ashraf, U.; Morelli, T.L.; Smith, A.B.; Hernandez, R.R. Aligning renewable energy expansion with climate-driven range shifts. Nat. Clim. Change 2024, 14, 242–246. [Google Scholar] [CrossRef]
Metrics | Object Detection | Keypoint Detection | ||||||
---|---|---|---|---|---|---|---|---|
Model | P (%) | R (%) | (%) | (%) | P (%) | R (%) | (%) | |
YOLOv10-n | 96.59 | 94.54 | 98.60 | 63.11 | 97.96 | 95.99 | 99.07 | 97.99 |
YOLOv10-s | 97.77 | 95.60 | 98.51 | 64.79 | 97.25 | 97.63 | 99.07 | 98.44 |
YOLOv10-HGNet-n | 97.91 | 95.08 | 99.06 | 63.32 | 96.36 | 97.27 | 99.18 | 98.45 |
YOLOv10-HGNet-s | 97.94 | 95.07 | 98.42 | 64.78 | 98.69 | 95.80 | 99.19 | 98.57 |
YOLOv9 | 95.80 | 94.50 | 97.47 | 59.42 | 96.20 | 95.60 | 98.71 | 97.69 |
YOLOv8 | 96.01 | 94.06 | 97.55 | 61.38 | 95.39 | 95.59 | 98.63 | 97.55 |
YOLOv5 | 94.84 | 94.54 | 97.53 | 61.04 | 93.99 | 94.92 | 97.94 | 97.13 |
RT-DETRv2 | 94.61 | 94.35 | 96.30 | 60.42 | - | - | - | - |
Results | Models | TPs | FPs | FNs | P (%) | R (%) | F1 (%) |
---|---|---|---|---|---|---|---|
Base models | YOLOv10-n (1) | 8239 | 887 | 262 | 90.28 | 96.92 | 93.48 |
YOLOv10-s (2) | 8294 | 695 | 207 | 92.27 | 97.57 | 94.84 | |
YOLOv10-HGNet-n (3) | 8329 | 574 | 172 | 93.55 | 97.98 | 95.71 | |
YOLOv10-HGNet-s (4) | 8346 | 798 | 155 | 91.27 | 98.18 | 94.60 | |
YOLOv9 (5) | 8235 | 1613 | 268 | 83.62 | 96.85 | 89.75 | |
YOLOv8 (6) | 8096 | 1326 | 407 | 85.93 | 95.21 | 90.33 | |
YOLOv5 (7) | 8148 | 1671 | 355 | 82.98 | 95.83 | 88.94 | |
Harmonized results | YOLOv10-Benchmark (1 and 2) | 8155 | 149 | 346 | 98.21 | 95.93 | 97.05 |
YOLOv10-HGNet (3 and 4) | 8267 | 165 | 234 | 98.04 | 97.25 | 97.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Zou, Z.; Yang, W. Mapping Wind Turbine Distribution in Forest Areas of China Using Deep Learning Methods. Remote Sens. 2025, 17, 940. https://doi.org/10.3390/rs17050940
Yang P, Zou Z, Yang W. Mapping Wind Turbine Distribution in Forest Areas of China Using Deep Learning Methods. Remote Sensing. 2025; 17(5):940. https://doi.org/10.3390/rs17050940
Chicago/Turabian StyleYang, Pukaiyuan, Zhigang Zou, and Wu Yang. 2025. "Mapping Wind Turbine Distribution in Forest Areas of China Using Deep Learning Methods" Remote Sensing 17, no. 5: 940. https://doi.org/10.3390/rs17050940
APA StyleYang, P., Zou, Z., & Yang, W. (2025). Mapping Wind Turbine Distribution in Forest Areas of China Using Deep Learning Methods. Remote Sensing, 17(5), 940. https://doi.org/10.3390/rs17050940