Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
Aspect | Factors | Abbreviation | Spatial Resolution | Temporal Resolution or Span | Geographical Meanings | Data Source |
Geomorphology | Elevation | Dem | 30 × 30 m2 | Average states or static indicator | Height above sea. | Geospatial data cloud (www.gscloud.cn (accessed on 28 February 2025)) |
Slope | Slope | 1 × 1 km2 | The ratio of elevation increment to horizontal increment. | Calculated from DEM data | ||
Aspect | Aspect | 1 × 1 km2 | The topographic slope orientation. | |||
Elevation difference | ED | 1 × 1 km2 | The difference between the maximum and minimum of elevation. | |||
Topographic wetness index (TWI) | TWI | 1 × 1 km2 | TWI = In[sink flow per unit area/Tan(slope)] The influence of topography on runoff direction and accumulation. | |||
Geomorphic type | GT | — | Classification based on elevation and topographic relief. | Resource and Environment Science and Data Center (https://www.resdc.cn/ (accessed on 28 February 2025)) | ||
Climate | Annual mean temperature | Temp | 0.1° × 0.1° | 2000~2023 (yearly data) | The annual average value of temperature. | European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5-Land Dataset (https://www.ecmwf.int/ (accessed on 28 February 2025)) |
Annual mean rainfall | Rainfall | 1 × 1 km2 | 2000~2022 (yearly data) | The annual average value of rainfall. | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 28 February 2025)) | |
Annual mean potential evapotranspiration | PET | 1 × 1 km2 | 2000~2022 (yearly data) | The annual average value of potential evapotranspiration. | ||
Terrestrial actual evapotranspiration | AET | 1 × 1 km2 | 2001~2019 (yearly data) | The annual average value of actual evapotranspiration. | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 28 February 2025)), ETMonitor Global Actual Evapotranspiration Dataset with 1-km Resolution [42] | |
Meteorology | Maximum of 3-h/6-h/12-h/24-h with frequency of 1% and 50% rainfall, annual average maximum rainfall for 3 h/6-h/12-h/24-h | (P3h)1%, (P3h)50%, (P3h)mean, (P6h)1%, (P6h)50%, (P6h)mean, (P12h)1%, (P12h)50%, (P12h)mean, (P24h)1%, (P24h)50%, (P24h)mean | 0.1° × 0.1° | 1979~2018 | Flash floods are primarily influenced by short-term meteorological indices within a day. Therefore, extreme rainfall data across four time scales within 24 h were selected. The 1% and 50% percentiles correspond to event frequencies occurring once every 100 years and once every two years, respectively. | A Big Earth Data Platform for Three Poles (https://poles.tpdc.ac.cn/ (accessed on 28 February 2025)), China meteorological forcing dataset [43]. |
Hydrology | Runoff | Runoff | 1 × 1 km2 | 1979–2013 (yearly data) | Index of the annual daily runoff for 35 years for each river segment, reflecting both the structure of the river network and the flux in the river network, obtained from VIC simulations. | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 28 February 2025)), Global Reconstruction of Naturalized River Discharge at 2.94 Million River Reaches (GRADES) [44,45]. |
Vegetation transpiration | Ec | 500 × 500 m2 | 2000–2020 (yearly data) | Water lost in plants to the atmosphere as water vapor. | PML-V2(China): evapotranspiration and gross primary production dataset. A Big Earth Data Platform for Three Poles (https://poles.tpdc.ac.cn/ (accessed on 28 February 2025)) [46,47]. | |
Vaporization of intercepted rainfall | Ei | 500 × 500 m2 | 2000–2020 (yearly data) | Water from vegetation canopy intercepting rainfall evaporates into the atmosphere. | ||
Soil evaporation | Es | 500 × 500 m2 | 2000–2020 (yearly data) | Water in soil that evaporates into the atmosphere. | ||
Underlying surface condition | Vegetation type | Vege | 1 × 1 km2 | Average states or static indicator | Vegetation type. | Resource and Environment Science and Data Center (https://www.resdc.cn/ (accessed on 28 February 2025)) |
NDVI | NDVI | 1 × 1 km2 | 2001~2020 (yearly data) | Normalized difference vegetation index. | Resource and Environment Science and Data Center (https://www.resdc.cn/ (accessed on 28 February 2025)) | |
LAI | LAI | 1 × 1 km2 | 2001~2023 (yearly data) | Leaf area index. | Google Earth Engine (https://developers.google.cn/earth-engine/datasets/catalog/MODIS_061_MOD15A2H (accessed on 28 February 2025)), MOD15A2H LAI | |
Soil type | Stype | 1 × 1 km2 | Average states or static indicator | Soil type. | HWSD v1.1 (http://www.ncdc.ac.cn (accessed on 28 February 2025)) | |
Soil texture | Stexture | 1 × 1 km2 | Assemblage of mineral particles of different sizes in soil. | |||
Soil depth | Sdepth | 1 × 1 km2 | The depth between the surface and the bedrock. | |||
Soil gravel content | Sgravel | 1 × 1 km2 | Proportion of gravel volume in surface soil. | |||
Soil saturated hydraulic conductivity | Ks | 1 × 1 km2 | In water-saturated soil, the amount of water passing through the soil per unit area in a unit time under a unit water potential gradient. | A High-Resolution Global Map of Soil Hydraulic Properties (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UI5LCE (accessed on 28 February 2025)) [48]. | ||
Soil moisture | Smoisture | 1 × 1 km2 | 2000~2020 (yearly data) | The amount of water contained in the soil. | A Big Earth Data Platform for Three Poles(https://poles.tpdc.ac.cn/ (accessed on 28 February 2025)), China Soil Moisture Dataset [49,50]. | |
Soil erodibility | Uslek | 250 × 250 m2 | Average states or static indicator | Soil erodibility reflects the sensitivity of soil to erosion and the transport capacity of soil particles. | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 28 February 2025)), Soil Erodibility Dataset of Pan-Third Pole 20 Countries [51,52]. |
3. Methods
3.1. Data Preprocessing
3.2. Clustering Analysis
3.2.1. Classic Machine Learning Methods
3.2.2. GNN Methods
3.3. Evaluation of Clustering Performance
3.4. Data Postprocessing and Mapping
3.5. Interpretation of Regionalization Results
4. Results
4.1. Clustering Performance of the Five Methods
4.2. Regionalization Result vs. Historic Flash Flood Events
4.3. Influence of Inducing Factors on Flash Flood Regionalization
5. Discussion
5.1. Strengths of the New Regionalization Framework
5.2. Impact of Inducing Factors on Flash Floods in the HMR
5.3. Limitations and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HMR | Hengduan Mountains region |
GNN | Graph Neural Network |
SHAP | Shapley Additive exPlanations |
SOFM | self-organizing feature map |
DGI | Deep Graph Infomax |
DMoN | Deep Modularity Networks |
Dink-Net | Dilation shrink Network |
CQI | clustering quality index |
DBI | Davies–Bouldin Index |
K | cluster number |
References
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Predicting flood susceptibility using LSTM neural networks. J. Hydrol. 2021, 594, 125734. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sens. 2021, 13, 4945. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [Google Scholar] [CrossRef]
- He, B.; Huang, X.; Ma, M.; Chang, Q.; Tu, Y.; Li, Q.; Zhang, K.; Hong, Y. Analysis of flash flood disaster characteristics in China from 2011 to 2015. Nat. Hazards 2018, 90, 407–420. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Huang, Y.; Liu, C. Spatiotemporal evolution and driving factors of China’s flash flood disasters since 1949. Sci. China Earth Sci. 2019, 49, 408–420. [Google Scholar] [CrossRef]
- Ministry of Water Resources of China. Bulletin of Flood and Drought Disasters in China; Ministry of Water Resources of China, Beijing: Beijing, China, 2021.
- Ma, M.; He, B.; Wan, J.; Jia, P.; Guo, X.; Gao, L.; Maguire, L.W.; Hong, Y. Characterizing the Flash Flooding Risks from 2011 to 2016 over China. Water 2018, 10, 704. [Google Scholar] [CrossRef]
- Tian, L.; Ming, B.; Zhang, W.; Huang, K. Multi-time scale complementarity analysis of hydropower, wind power and photoelectric resources in lower reaches of Jinsha River. J. Hydroelectr. Eng. 2023, 42, 40–49, (In Chinese with English abstract). [Google Scholar]
- Wen, X.; Sun, Y.; Tan, Q.; Lei, X.; Ding, Z.; Liu, Z.; Wang, H. Risk and Benefit Analysis of Hydro-wind-solar Multi-energy System Considering the One-day Ahead Output Forecast Uncertainty. Adv. Eng. Sci. 2020, 52, 32–41, (In Chinese with English abstract). [Google Scholar]
- Cui, P.; Ge, Y.-G.; Li, S.; Li, Z.; Xu, X.-W.; Zhou, G.G.D.; Chen, H.-Y.; Wang, H.; Lei, Y.; Zhou, L.; et al. Scientific challenges in disaster risk reduction for the Sichuan–Tibet Railway. Eng. Geol. 2022, 309, 106837. [Google Scholar] [CrossRef]
- Vichta, T.; Deutscher, J.; Hemr, O.; Tomášová, G.; Žižlavská, N.; Brychtová, M.; Bajer, A.; Shukla, M.K. Combined effects of rainfall-runoff events and antecedent soil moisture on runoff generation processes in an upland forested headwater area. Hydrol. Process. 2024, 38, e15216. [Google Scholar] [CrossRef]
- Ding, L.; Ma, L.; Li, L.; Liu, C.; Li, N.; Yang, Z.; Yao, Y.; Lu, H. A Survey of Remote Sensing and Geographic Information System Applications for Flash Floods. Remote Sens. 2021, 13, 1818. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef]
- Rami, O.; Hasnaoui, M.D.; Ouazar, D.; Bouziane, A. A mixed clustering-based approach for a territorial hydrological regionalization. Arab. J. Geosci. 2021, 15, 75. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xu, X.M.; Li, X.; Cui, P.; Zheng, D. A new scheme of climate-vegetation regionalization in the Hengduan Mountains Region. Sci. China-Earth Sci. 2024, 67, 751–768. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, Q.; Lu, Y.; Li, J.; Xiao, P. Eco-hydrological division of the watershed in the rapid topographic change basin on the eastern Tibetan Plateau. Shuili Xuebao 2022, 53, 243–252, (In Chinese with English abstract). [Google Scholar]
- Ahani, A.; Mousavi Nadoushani, S.S.; Moridi, A. Regionalization of watersheds by finite mixture models. J. Hydrol. 2020, 583, 124620. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Zhang, X.; Ma, Q.; Ren, L. Mapping homogeneous regions for flash floods using machine learning: A case study in Jiangxi province, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102717. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M.; Işık, Z. Exploring the additional value of class imbalance distributions on interpretable flash flood susceptibility prediction in the Black Warrior River basin, Alabama, United States. J. Hydrol. 2022, 610, 127877. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Pham, Q.B. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci. Total Environ. 2020, 711, 134514. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Yao, J.; Bai, Y.; Zhu, W. An Overview of Advanced Deep Graph Node Clustering. IEEE Trans. Comput. Soc. Syst. 2023, 11, 1302–1314. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, S.; Qin, H.; Liu, S.; Shen, Q.; Qu, Y.; Zheng, Z.; Sun, H.; Zhou, J. Assessing spatial connectivity effects on daily streamflow forecasting using Bayesian-based graph neural network. Sci. Total Environ. 2023, 855, 158968. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed Graph Clustering: A Deep Attentional Embedding Approach. In Proceedings of the International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019. [Google Scholar] [CrossRef]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30, 1025–1035. [Google Scholar]
- Devvrit, F.; Sinha, A.; Dhillon, I.; Jain, P. S3GC: Scalable self-supervised graph clustering. Adv. Neural Inf. Process. Syst. 2022, 35, 3248–3261. [Google Scholar]
- Liu, Y.; Liang, K.; Xia, J.; Zhou, S.; Yang, X.; Liu, X.; Li, S.Z. Dink-net: Neural clustering on large graphs. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 21794–21812. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Zhang, X.; Ma, Q.; Ren, L. Flash Flood Hazard Regionalization Based on Graph Clustering Neural Network in Jiangxi Province,China. Geogr. Geo-Inf. Sci. 2023, 39, 7–15, (In Chinese with English abstract). [Google Scholar]
- Jiang, S.; Sweet, L.-b.; Blougouras, G.; Brenning, A.; Li, W.; Reichstein, M.; Denzler, J.; Shangguan, W.; Yu, G.; Huang, F.; et al. How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earth’s Future 2024, 12, e2024EF004540. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Shi, Z.; Deng, W.; Zhang, S. Spatio-temporal pattern changes of land space in Hengduan Mountains during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Han, F.; Pang, Y. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. J. Mt. Sci. 2010, 7, 123–132. [Google Scholar] [CrossRef]
- Yang, Z.-I.; Zhang, T.-B.; Yi, G.-H.; Li, J.-J.; Qin, Y.-B.; Chen, Y. Spatio-temporal variation of Fraction of Photosynthetically Active Radiation absorbed by vegetation in the Hengduan Mountains, China. J. Mt. Sci. 2021, 18, 891–906. [Google Scholar] [CrossRef]
- He, Y.; Xiong, Q.; Yu, L.; Yan, W.; Qu, X. Impact of Climate Change on Potential Distribution Patterns of Alpine Vegetation in the Hengduan Mountains Region, China. Mt. Res. Dev. 2020, 40, 48–54. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.; Zhang, X. Characteristics of temporal and spatial variations of nocturnal precipitation in China. J. Nanjing Univ. Nat. Sci. 2022, 58, 750–765, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Wang, L.; Li, X.; Xue, Y.; Jia, H. Spatiotemporal Change Characteristics of Extreme Precipitation in South-western China and its Relationship with Intense ENSO Events. Plateau Meteorol. 2022, 41, 604–616, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Bian, Y.; Sun, P.; Zhang, Q.; Liu, R.; Ma, Z.; Zou, Y.; Lyu, Y. Spatial distribution characteristics of extreme climatic events in the hengduan mountains Region. Water Resour. Hydropower Eng. 2021, 52, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Zhang, G. The development characteristics and formation modes of rainstorm-triggered flash flood disasters in the Hengduan Mountains. Acta Geogr. Sin. 2024, 79, 600–616, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Yao, H.; Tao, Z.; Zhu, M. Vegetation distribution and vegetation activity changes in the Hengduan Mountains from 1992 to 2020. Acta Geogr. Sin. 2022, 77, 2787–2802, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Mia, M.U.; Rahman, M.; Elbeltagi, A.; Abdullah-Al-Mahbub, M.; Sharma, G.; Islam, H.M.T.; Pal, S.C.; Costache, R.; Islam, A.R.M.T.; Islam, M.M.; et al. Sustainable flood risk assessment using deep learning-based algorithms with a blockchain technology. Geocarto Int. 2022, 38, 1–29. [Google Scholar] [CrossRef]
- Cui, M.; Zhou, G.; Zhang, D.; Zhang, S. Global snowmelt flood disasters and their impact from 1900 to 2020. J. Glaciol. Geocryol. 2022, 44, 1898–1911. [Google Scholar]
- Zheng, C.; Jia, L.; Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Lin, P.; Pan, M.; Beck, H.E.; Yang, Y.; Yamazaki, D.; Frasson, R.; David, C.H.; Durand, M.; Pavelsky, T.M.; Allen, G.H.; et al. Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. Water Resour. Res. 2019, 55, 6499–6516. [Google Scholar] [CrossRef]
- Lin, P.; Pan, M.; Yang, Y. Global Reconstruction of Naturalized River Discharge at 2.94 Million River Reaches (GRADES); National Tibetan Plateau Data Center/Third Pole Environment Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Ma, N.; Tian, J.; Kong, D.; Liu, C. A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020. Earth Syst. Sci. Data 2022, 14, 5463–5488. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y. PML-V2 (China): Evapotranspiration and Gross Primary Production Dataset (2000.02.26–2020.12.31); National Tibetan Plateau Data Center/Third Pole Environment Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G.; Zha, Y. A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resour. Res. 2018, 54, 9774–9790. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D.; et al. A 1km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Shangguan, W.; Li, Q.; Shi, G. China Soil Moisture Dataset (2000–2020), A Big Earth Data Platform for Three Poles; National Tibetan Plateau Data Center/Third Pole Environment Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Zhang, K.; Li, Y.; Wang, C.; Pang, G. Effects of Content of Soil Rock Fragments on Calculating of Soil Erodibility. Acta Pedol. Sin. 2021, 58, 1157–1168, (In Chinese with English abstract). [Google Scholar]
- Yang, Q. Soil Erodibility Dataset of Pan-Third Pole 20 Countries (2020, with a Resolution of 7.5 arc Second); National Tibetan Plateau Data Center/Third Pole Environment Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, H.; Zheng, Z.; Chen, J.; Li, Z.; Bu, J.; Wu, J.; Wang, X.; Zhu, W.; Ester, M. A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions. ACM Comput. Surv. 2024, 57, 69. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Society. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. Int. Conf. Learn. Represent. 2019, 2, 4. [Google Scholar]
- Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Müller, E. Graph clustering with graph neural networks. J. Mach. Learn. Res. 2023, 24, 1–21. [Google Scholar] [CrossRef]
- Mao, Q.; Peng, J.; Liu, Y.; Wu, W.; Zhao, M.; Wang, Y. An ecological function zoning approach coupling SOFM and SVM: A case study in Ordos. Acta Geogr. Sin. 2019, 74, 460–474, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Almagbile, A.; Alomari, A.H. Spatiotemporal Analysis of Traffic Accidents Hotspots Based on Geospatial Techniques. ISPRS Int. J. Geo-Inf. 2022, 11, 260. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Guan, Z.; Chen, Y.; Liu, C.; Yang, T. Flash flood susceptibility mapping based on catchments using an improved Blending machine learning approach. Hydrol. Res. 2023, 54, 557–579. [Google Scholar] [CrossRef]
- Cao, Y.; Jia, H.; Xiong, J.; Cheng, W.; Li, K.; Pang, Q.; Yong, Z. Flash Flood Susceptibility Assessment Based on Geodetector, Certainty Factor, and Logistic Regression Analyses in Fujian Province, China. ISPRS Int. J. Geo-Inf. 2020, 9, 748. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef]
- Tan, X.Z.; Li, Y.; Wu, X.X.; Dai, C.; Zhang, X.L.; Cai, Y.P. Identification of the key driving factors of flash flood based on different feature selection techniques coupled with random forest method. J. Hydrol. Reg. Stud. 2024, 51, 101624. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Ghaffar, B.; Qin, S.; Mousa, B.G.; Sharifi, A.; Huq, M.E.; Aslam, M. Flash Flood Susceptibility Assessment and Zonation by Integrating Analytic Hierarchy Process and Frequency Ratio Model with Diverse Spatial Data. Water 2022, 14, 3069. [Google Scholar] [CrossRef]
- Qiu, A.-N.; Zhang, Y.-J.; Wang, G.-X.; Cui, J.; Song, Y.-X.; Sun, X.-Y.; Chen, L. A modified TOPMODEL introducing the bedrock surface topographic index in Huangbengliu watershed, China. J. Mt. Sci. 2022, 19, 3517–3532. [Google Scholar] [CrossRef]
- Venegas-Cordero, N.; Cherrat, C.; Kundzewicz, Z.W.; Singh, J.; Piniewski, M. Model-based assessment of flood generation mechanisms over Poland: The roles of precipitation, snowmelt, and soil moisture excess. Sci. Total Environ. 2023, 891, 164626. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Junfang, C.; Ruoxuan, L.; Yaling, Z.; Minxi, L.; Li, G.; Euihua, N. Mechanisms of soil moisture response to rainfall infiltration in dry-hot valley of southwest China. South-North Water Transf. Water Sci. Technol. 2024, 22, 736–746, (In Chinese with English abstract). [Google Scholar]
- Liu, G.; Tian, G.; Shu, D.; Lin, S.; Liu, S. Characteristics of surface runoff and throughflow in a purple soil of Southwestern China under various rainfall events. Hydrol. Process. 2005, 19, 1883–1891. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.; Dahal, A.; Cheng, W.; Zhao, M.; Lombardo, L. On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values. Geosci. Front. 2024, 15, 101800. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, C.; Cui, P.; Hassan, M.; Duan, Z.; Bhattacharyya, S.; Yao, S.; Zhao, Y. Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods. Remote Sens. 2025, 17, 946. https://doi.org/10.3390/rs17060946
Li Y, Zhang C, Cui P, Hassan M, Duan Z, Bhattacharyya S, Yao S, Zhao Y. Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods. Remote Sensing. 2025; 17(6):946. https://doi.org/10.3390/rs17060946
Chicago/Turabian StyleLi, Yifan, Chendi Zhang, Peng Cui, Marwan Hassan, Zhongjie Duan, Suman Bhattacharyya, Shunyu Yao, and Yang Zhao. 2025. "Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods" Remote Sensing 17, no. 6: 946. https://doi.org/10.3390/rs17060946
APA StyleLi, Y., Zhang, C., Cui, P., Hassan, M., Duan, Z., Bhattacharyya, S., Yao, S., & Zhao, Y. (2025). Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods. Remote Sensing, 17(6), 946. https://doi.org/10.3390/rs17060946