Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA
Abstract
:1. Introduction
2. Remote Sensing Imagery Landslide Dataset
2.1. Data Description
2.2. Data Processing
3. Research Methodology
3.1. ResUNet Network
3.2. Lightweight Edge-Focused Attention Mechanism BFA
3.3. General Structure of ResUNet–BFA
4. Experiment and Analysis
4.1. Model Training Setup
4.2. Evaluation Metrics
4.3. Analysis of Results
4.3.1. Comparison of the Recognition Results Between the Proposed Model and Other Models
4.3.2. Comparison of the Recognition Results Between the Attention Mechanism in This Paper and Other Attention Mechanisms
4.3.3. Validation of Cross-Regional Seismic Landslide Identification
5. Discussion
- The study area selected for this research comprises mostly mountainous regions with high vegetation coverage. Before the earthquake, most of the landslides were covered by vegetation, but after the earthquake, the vegetation on the slope surface was damaged, and many slopes changed from forested areas to bare land, which can be relatively easily identified through RGB remote sensing images. However, for those areas that were originally bare land and had no vegetation coverage before the earthquake, the surface coverage changes were minimal after the earthquake, and the distinction between landslides and the surrounding environment was not obvious, making it difficult to distinguish them via optical images. Moreover, this study has high requirements for the quality of optical images. When post-earthquake images are covered by thick clouds or snow, this method is not effective. This is a relatively serious problem for emergency response to landslide disasters, as a certain revisit period is needed to obtain high-quality images. In future research, efforts will be made to study areas with less vegetation coverage and integrate synthetic aperture radar data.
- The annotation of landslide samples is highly important. In the absence of onsite investigations, even in high-resolution remote sensing images, interpretation experts may misidentify or overlook mixed landslide pixels and small landslide areas. Therefore, both the training set and the test set may include FPs and FNs, that is, labels that incorrectly represent non-landslides as landslides and features that are missed and not marked as landslides. This uncertainty affects all the experiments but does not systematically alter the findings of this paper.
- This study conducts analyses on satellite data with a unified pixel size. Although this simplifies processing and ensures data consistency, application limitations exist when integrating multisource resolution data (such as Landsat and MODIS) and overlaying them with heterogeneous raster/vector data. To address this issue, resampling techniques (such as bilinear interpolation cubic convolution) combined with a maximum likelihood classifier can be used to unify the data resolution and ensure the compatibility of multisource data [95]. In addition, for landslide identification, integrating multidimensional influencing factors (such as DEMs, stratigraphic attributes, distance from rivers, distribution of fold/fault zones, lithology, slope, rainfall, vegetation indices, etc.) and dynamic characteristic data (such as synthetic aperture radar interferometry data) can overcome the accuracy bottleneck of RGB optical images. Therefore, advanced image fusion methods (such as band synthesis and multisource heterogeneous data fusion strategies) and semantic feature extraction models can be adopted to construct a comprehensive analysis framework that considers geographical environmental features and kinematic laws, thereby improving detection reliability [96].
- The model proposed in this article can be executed more intensively via other advanced block-based or modular strategies. This includes searching for predictions via a block-combined network structure [97], mapping via a hybridized modular structure [98], denoising via 3D filtering and block matching [99], and employing block-based CNN models for image detection [100].
- This article focuses on the emergency identification of post-occurrence landslides, aiming to assist rescue operations through the application of deep learning technologies. However, adhering to the principle that “prevention is better than cure”, future explorations could involve leveraging advanced deep learning models such as the transformer architecture [101] and Bayesian neural networks (BNNs) [102], along with ensemble learning strategies [103], to achieve landslide prediction and uncertainty analysis. This approach would more effectively contribute to disaster prevention and reduce reliance on emergency response.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Dai, L.; Fan, X.; Wang, X.; Fang, C.; Zou, C.; Tang, X.; Wei, Z.; Xia, M.; Wang, D.; Xu, Q. Coseismic landslides triggered by the 2022 Luding Ms6. 8 earthquake, China. Landslides 2023, 20, 1277–1292. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Michael, J.A. A method for producing digital probabilistic seismic landslide hazard maps. Eng. Geol. 2000, 58, 271–289. [Google Scholar] [CrossRef]
- Wartman, J.; Dunham, L.; Tiwari, B.; Pradel, D. Landslides in eastern Honshu induced by the 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 2013, 103, 1503–1521. [Google Scholar] [CrossRef]
- Lin, C.H.; Kumagai, H.; Ando, M.; Shin, T.C. Detection of landslides and submarine slumps using broadband seismic networks. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Fu, R.; He, J.; Liu, G.; Li, W.; Mao, J.; He, M.; Lin, Y. Fast seismic landslide detection based on improved mask R-CNN. Rem. Sen. 2022, 14, 3928. [Google Scholar] [CrossRef]
- Liu, R.; Li, L.; Pirasteh, S.; Lai, Z.; Yang, X.; Shahabi, H. The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery. Arab. J. Geosci. 2021, 14, 259. [Google Scholar] [CrossRef]
- Guo, X.; Fu, B.; Du, J.; Shi, P.; Li, J.; Li, Z.; Du, J.; Chen, Q.; Fu, H. Monitoring and assessment for the susceptibility of landslide changes after the 2017 ms 7.0 Jiuzhaigou earthquake using the remote sensing technology. Front. Earth Sc. 2021, 9, 633117. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Env. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification. Integrated Series in Information Systems; Springer: Boston, MA, USA, 2016; Volume 36, pp. 207–235. [Google Scholar]
- Kamran, K.V.; Feizizadeh, B.; Khorrami, B.; Ebadi, Y. A comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping. Appl. Geomat. 2021, 13, 837–851. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Khosravi, K.; Chapi, K.; Trinh, P.T.; Ngo, T.Q.; Hosseini, S.V.; Bui, D.T. A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto Int. 2019, 34, 1385–1407. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Sridhar, V. Landslide susceptibility analysis: A logistic regression model case study in Coonoor, India. Hydrology 2021, 8, 41. [Google Scholar] [CrossRef]
- Sun, D.; Xu, J.; Wen, H.; Wang, D. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng. Geol. 2021, 281, 105972. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, M.N.; Sheikh, M.S.; Sayeid, M.A.; Mahmud, K.H.; Hafsa, B. GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon 2024, 10, e23424. [Google Scholar] [CrossRef]
- Krkač, M.; Špoljarić, D.; Bernat, S.; Arbanas, S.M. Method for prediction of landslide movements based on random forests. Landslides 2017, 14, 947–960. [Google Scholar] [CrossRef]
- Zhang, W.; He, Y.; Wang, L.; Liu, S.; Meng, X. Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing. Geol. J. 2023, 58, 2372–2387. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, J.; Zheng, J.; Fan, H.; Kong, J.; Zhan, J. Application of Bayesian hyperparameter optimized random forest and XGBoost model for landslide susceptibility mapping. Front. Earth Sc. 2021, 9, 712240. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Chen, F.; Yu, B.; Li, B. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: A case study of national Nepal. Landslides 2018, 15, 453–464. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Schoenfeldt, E.; Winocur, D.; Pánek, T.; Korup, O. Deep learning reveals one of Earth’s largest landslide terrain in Patagonia. Earth Planet. Sc. Lett. 2022, 593, 117642. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, G.; Tang, H.; Zhao, B.; Xiong, C. Comparative analysis of five convolutional neural networks for landslide susceptibility assessment. Bull. Eng. Geol. Environ. 2023, 82, 377. [Google Scholar] [CrossRef]
- Aslam, B.; Zafar, A.; Khalil, U. Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Nat. Hazards 2023, 115, 673–707. [Google Scholar] [CrossRef]
- Li, C.; Yi, B.; Gao, P.; Li, H.; Sun, J.; Chen, X.; Zhong, C. Valuable clues for DCNN-based landslide detection from a comparative assessment in the Wenchuan earthquake area. Sensors 2021, 21, 5191. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Meena, S.R.; Soares, L.P.; Grohmann, C.H.; Van Westen, C.; Bhuyan, K.; Singh, R.P.; Floris, M.; Catani, F. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides 2022, 19, 1209–1229. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide detection using deep learning and object-based image analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, C.; Huang, F.; Yao, C. Optimization of the landslide identification method based on a dual attention mechanism. Bull. Geol. Sci. Technol. 2022, 41, 246–253. [Google Scholar]
- Wang, Y.; Zhang, P.; Sun, K.; Sun, X.; Liu, L. Remote sensing landslide target recognition based on attention fusion. Chin. J. Liq. Cryst. Disp. 2022, 37, 1498–1506. [Google Scholar] [CrossRef]
- Ji, S.; Yu, D.; Shen, C.; Li, W.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Chandra, S.S.V. Visual saliency-based landslide identification using super-resolution remote sensing data. Results Eng. 2024, 21, 101656. [Google Scholar] [CrossRef]
- Li, Y.; Wang, P.; Feng, Q.; Ji, X.; Jin, D.; Gong, J. Landslide detection based on shipborne images and deep learning models: A case study in the Three Gorges Reservoir Area in China. Landslides 2023, 20, 547–558. [Google Scholar] [CrossRef]
- Lei, F.; Wang, Y.; Longpeng, I. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide. Rem. Sens. Nat. Resour. 2022, 34, 224–230. [Google Scholar]
- Ullo, S.L.; Mohan, A.; Sebastianelli, A.; Ahamed, S.E.; Kumar, B.; Dwivedi, R.; Sinha, G.R. A new mask R-CNN-based method for improved landslide detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Xu, Y.; Ouyang, C.; Xu, Q.; Wang, D.; Zhao, B.; Luo, Y. CAS landslide dataset: A large-scale and multisensor dataset for deep learning-based landslide detection. Sci. Data 2024, 11, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Pun, M.O.; Shi, W. Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning. ISPRS J. Photogramm. 2023, 197, 1–17. [Google Scholar] [CrossRef]
- Liu, J.; Du, Y.; Han, C.; Xie, F. Analysis of magnitude–frequency distribution of earthquakes in the Sichuan basin, southwest China. Seismol. Res. Lett. 2024, 95, 3482–3493. [Google Scholar] [CrossRef]
- Shahri, A.A.; Shan, C.; Zäll, E.; Larsson, S. Spatial distribution modeling of subsurface bedrock using a developed automated intelligence deep learning procedure: A case study in Sweden. J. Rock Mech. Geotech. Eng. 2021, 13, 1300–1310. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Zandsalimi, Z.; Barbosa, S.A.; Alemazkoor, N.; Goodall, J.L.; Shafiee-Jood, M. Deep learning-based downscaling of global digital elevation models for enhanced urban flood modeling. J. Hydrol. 2025, 653, 132687. [Google Scholar] [CrossRef]
- Chen, M.; Tang, C.; Li, M.; Xiong, J.; Luo, Y.; Shi, Q.; Zhang, X.; Tie, Y.; Feng, Q. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area. Catena 2022, 210, 105871. [Google Scholar] [CrossRef]
- Li, G.; Zang, M.; Qi, S.; Bo, J.; Yang, G.; Liu, T. An infinite slope model considering unloading joints for spatial evaluation of coseismic landslide hazards triggered by a reverse seismogenic fault: A case study of the 2013 lushan earthquake. Sustainability 2023, 16, 138. [Google Scholar] [CrossRef]
- He, X.; Xu, C.; Qi, W.; Huang, Y. Contrasting landslides distribution patterns and seismic rupture processes of 2014 Jinggu and Ludian earthquakes, China. Sci. Rep. 2024, 14, 28470. [Google Scholar] [CrossRef]
- Chang, M.; Cui, P.; Xu, L.; Zhou, Y. The spatial distribution characteristics of coseismic landslides triggered by the Ms7. 0 Lushan earthquake and Ms7. 0 Jiuzhaigou earthquake in southwest China. Environ. Sci. Pollut. Res. 2021, 28, 20549–20569. [Google Scholar] [CrossRef]
- Su, F.; Liu, H.; Han, Y. The extraction of mountain hazard induced by Wenchuan earthquake and analysis of its distributing characteristic. J. Remote Sens. 2008, 12, 956–963. [Google Scholar]
- Fu, X.; Sheng, Q.; Li, G.; Zhang, Z.; Zhou, Y.; Du, Y. Analysis of landslide stability under seismic action and subsequent rainfall: A case study on the Ganjiazhai giant landslide along the Zhaotong-Qiaojia road during the 2014 Ludian earthquake, Yunnan, China. Bull. Eng. Geol. Environ. 2020, 79, 5229–5248. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.F.; Luo, Y.; Jiao, Q.S. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8, 2017. J. Remote Sens. 2019, 23, 785–795. [Google Scholar] [CrossRef]
- Nava, L.; Monserrat, O.; Catani, F. Improving landslide detection on SAR data through deep learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4020405. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, S.C.; He, X.N.; Xue, B.W.; Zha, F.K. Improved DeepLabV3+ model for landslide identification in high-resolution remote sensing images after earthquakes. Natl. Remote Sens. Bull. 2024, 28, 2293–2305. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.W.; Shen, L.L.; Dou, S.; Wu, S.E.; Tian, Y.Y.; Li, X. Cataloging landslides triggered by the 2014 Ludian MS6.5 earthquake and their implications for some seismic parameters. Seismol. Geol. 2014, 36, 1186–1203. [Google Scholar] [CrossRef]
- Xu, C. Distribution Map of Landslide Data from the Ms7.0 Earthquake in Jiuzhaigou County, Sichuan Province on August 8, 2017; National Cryosphere Desert Data Center: Beijing, China, 2022; Available online: http://www.ncdc.ac.cn (accessed on 1 March 2025). [CrossRef]
- Wei, R.; Ye, C.; Sui, T.; Zhang, H.; Ge, Y.; Li, Y. A feature enhancement framework for landslide detection. Int. J. Appl. Earth Obs. 2023, 124, 103521. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Xu, G.; Wang, L. LandslideCL: Towards robust landslide analysis guided by contrastive learning. Landslides 2023, 20, 461–474. [Google Scholar] [CrossRef]
- Lv, N.; Ma, H.; Chen, C.; Pei, Q.; Zhou, Y.; Xiao, F.; Li, J. Remote sensing data augmentation through adversarial training. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9318–9333. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Luo, C.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 2017, 54, 741–758. [Google Scholar] [CrossRef]
- Kaushal, A.; Gupta, A.K.; Sehgal, V.K. A semantic segmentation framework with UNet-pyramid for landslide prediction using remote sensing data. Sci. Rep. 2024, 14, 30071. [Google Scholar] [CrossRef]
- Tan, C.; Chen, T.; Liu, J.; Deng, X.; Wang, H.; Ma, J. Building extraction from Unmanned Aerial Vehicle (UAV) data in a landslide-affected scattered mountainous area based on res-unet. Sustainability 2024, 16, 9791. [Google Scholar] [CrossRef]
- Niu, C.; Gao, O.; Lu, W.; Liu, W.; Lai, T. Reg-SA–UNet++: A lightweight landslide detection network based on single-temporal images captured postlandslide. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9746–9759. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Xu, Q.; Deng, J.; Li, W.; Wei, Y. Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides 2022, 19, 673–686. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer: Cham, Switzerland, 2022; pp. 205–218. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Demir, G.; Başağa, H.B. Landslide detection using visualization techniques for deep convolutional neural network models. Nat. Hazards 2021, 109, 329–350. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recogn. 2019, 90, 119–133. [Google Scholar] [CrossRef]
- Liu, T.; Chen, T.; Niu, R.; Plaza, A. Landslide detection mapping employing CNN, ResNet, and DenseNet in the three gorges reservoir, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11417–11428. [Google Scholar] [CrossRef]
- Song, Y.; Zou, Y.; Li, Y.; He, Y.; Wu, W.; Niu, R.; Xu, S. Enhancing landslide detection with SBConv-Optimized U-Net architecture based on multisource remote sensing data. Land 2024, 13, 835. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Yao, G.; Zhou, W.; Liu, M.; Xu, Q.; Wang, H.; Li, J.; Ju, Y. An empirical study of the convolution neural networks based detection on object with ambiguous boundary in remote sensing imagery—A case of potential loess landslide. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 323–338. [Google Scholar] [CrossRef]
- Wen, Y.; Ma, X.; Zhang, X.; Pun, M.O. GCD-DDPM: A generative change detection model based on difference-feature guided DDPM. IEEE T. Geosci. Remote 2024, 62, 5404416. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Yi, Y.; Zhang, Z.; Chao, S. Long time-series glacier outlines in the three-rivers headwater region from 1986 to 2021 based on deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5734–5752. [Google Scholar] [CrossRef]
- Chen, J.; Wu, M.; Yan, H.; Xie, B.; Zhang, C. Change-aware network for damaged roads recognition and assessment based on multi-temporal remote sensing imageries. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 13–15 October 2024; Liu, Q., Ma, Z., Zheng, W., Zha, H., Chen, X., Wang, L., Ji, R., Eds.; Springer: Singapore, 2024; pp. 255–266. [Google Scholar]
- Zhou, M.; Zhou, Y.; Yang, D.; Song, K. Remote sensing image classification based on canny operator enhanced edge features. Sensors 2024, 24, 3912. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tan, S.; Zhang, Q.; Chen, H. Automatic identification model for landslide disaster using remote sensing images based on improved multiresunet. IEEE Access 2025, 13, 10653–10662. [Google Scholar] [CrossRef]
- Le, C.; Pham, L.; Lampert, J.; Schlögl, M.; Schindler, A. Landslide detection and segmentation using remote sensing images and deep neural networks. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 9582–9586. [Google Scholar]
- Ciccone, F.; Ceruti, A.; Bacciaglia, A.; Meisina, C. Automating landslips segmentation for damage assessment: A comparison between deep learning and classical models. In Proceedings of the International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering, Florence, Italy, 6–8 September 2023; Springer: Cham, Switzerland, 2023; pp. 91–99. [Google Scholar]
- Ding, L.; Goshtasby, A. On the Canny edge detector. Pattern Recogn. 2001, 34, 721–725. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, J.; Liu, J.; Deng, X.; Zhang, G.; Guo, H. Enhancing deep learning-based landslide detection from open satellite imagery via multisource data fusion of spectral, textural, and topographical features: A case study of old landslide detection in the Three Gorges Reservoir Area (TGRA). Geocarto Int. 2024, 39, 2421224. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, J.; Yang, Y.; Wang, T.; Liu, G. Analysis of the impact of terrain factors and data fusion methods on uncertainty in intelligent landslide detection. Landslides 2024, 21, 1849–1864. [Google Scholar] [CrossRef]
- Wang, H.; Nie, D.; Tuo, X.; Zhong, Y. Research on crack monitoring at the trailing edge of landslides based on image processing. Landslides 2020, 17, 985–1007. [Google Scholar] [CrossRef]
- Theckedath, D.; Sedamkar, R.R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Comput. Sci. 2020, 1, 79. [Google Scholar] [CrossRef]
- Qin, H.; Wang, J.; Mao, X.; Zhao, Z.; Gao, X.; Lu, W. An improved faster R-CNN method for landslide detection in remote sensing images. J. Geovis. Spat. Anal. 2024, 8, 2. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference On Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hacıefendioğlu, K.; Adanur, S.; Demir, G. Automatic landslide segmentation using a combination of grad-CAM visualization and K-means clustering techniques. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 943–959. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, C.; Li, T.; Xu, C.; He, X.; Shao, X.; Xu, X.; Zhan, T.; Chen, Z. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Zeng, C.; Cao, Z.; Su, F.; Zeng, Z.; Yu, C. A dataset of high-precision aerial imagery and interpretation of landslide and debris flow disaster in Sichuan and surrounding areas between 2008 and 2020. China Sci. Data 2022, 7, 191–201. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.; Ghamisi, P.; Kopp, M.; Kreil, D. Landslide4sense: Reference benchmark data and deep learning models for landslide detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5633017. [Google Scholar] [CrossRef]
- Shahri, A.A.; Spross, J.; Johansson, F.; Larsson, S. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena 2019, 183, 104225. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Qiu, Y.; Chen, J.; Zhu, X.; Chen, H. The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation. Remote Sens. Environ. Interdiscip. J. 2022, 279, 113111. [Google Scholar] [CrossRef]
- Edrich, A.K.; Yildiz, A.; Roscher, R.; Bast, A.; Graf, F.; Kowalski, J. A modular framework for FAIR shallow landslide susceptibility mapping based on machine learning. Nat. Hazards 2024, 120, 8953–8982. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Zhang, R. A modular deep learning framework for landslide susceptibility mapping using multi-source geospatial data. Bull. Eng. Geol. Environ. 2020, 79, 3425–3441. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising with block-matching and 3D filtering. In Proceedings of the Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, San Jose, CA, USA, 16–18 January 2006; SPIE: Bellingham, WA, USA, 2006; pp. 354–365. [Google Scholar]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Lv, P.; Ma, L.; Li, Q.; Du, F. ShapeFormer: A shape-enhanced vision transformer model for optical remote sensing image landslide detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2681–2689. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Chunling, S.; Larsson, S. A hybrid ensemble-based automated deep learning approach to generate 3D geo-models and uncertainty analysis. Eng. Comput. 2024, 40, 1501–1516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Landslide Dataset | Number of Images | Original Resolution (m) | Cropped Size (pixels) | Study Area | Data Source |
---|---|---|---|---|---|
Three Gorges Reservoir Area Landslide Dataset | 894 | Unknown | 224 × 224 | Three Gorges Reservoir Area in China | Shipborne Images |
Loess Landslide Dataset | 2154 | 2 × 2 | 512 × 512 | Southeastern Gansu Province in China | GF-1 Satellite Images |
UAV Landslide Dataset | 160 | Unknown | 512 × 512 | Multiple Regions Globally | Unmanned Aerial Vehicle (UAV) imagery |
Bijie Landslide Dataset | 2773 | 0.8 × 0.8 | Varies by landslide size | Bijie in China | TripleSat Satellite Images |
CAS Landslide Dataset | 20,865 | 0.2 × 0.2–5 × 5 | 512 × 512 | Nine Different Regions Globally | Multiple Satellite and UAV Images |
Earthquake Name | Magnitude | Date | Number of Aftershocks with Magnitude 4.0 or Above | Death Toll | Direct Economic Loss/Billion USD |
---|---|---|---|---|---|
Wenchuan Earthquake | 8.0 | 12 May 2008 | 311 | 69,227 | 1198.72 |
Ludian Earthquake | 6.5 | 3 August 2014 | 4 | 617 | 28.09 |
Jiuzhaigou Earthquake | 7.0 | 8 August 2017 | 3 | 25 | 11.41 |
Category | Landslide | Non-Landslide | Total |
---|---|---|---|
Training set | 1642 | 539 | 2181 |
Validation set | 204 | 69 | 273 |
Test set | 197 | 76 | 273 |
Total | 2043 | 684 | 2727 |
Hardware environment | CPU | 12 vCPU Intel(R) Xeon(R) Platinum 8352 V CPU @ 2.10GHZ |
GPU | NVIDIA GeForce RTX 4090(24GB), 1 | |
Operating system | Ubuntu22.04 | |
Software environment | Torch | 2.3.0 (Cuda 12.1) |
Python | 3.12 |
Parameter Name | Parameter Value |
---|---|
Image Size | 224 × 224 |
Loss function | Focal Loss + Dice Loss |
Batch Size | 16 |
Learning Rate | 0.0001 |
Max Epoch | 50 |
Optimizer | Adam |
Decay Exponent | 0.9 |
Early stopping patience | 10 |
Actual Class | Predicted Class | |
---|---|---|
Positive | Negative | |
Positive | True Positive (TP) | False Negative (FN) |
Negative | False Positive (FP) | True Negative (TN) |
Model | Training Time (Minutes) | Testing Time (Seconds) |
---|---|---|
UNet | 39.22 | 96.33 |
MultiResUNet | 57.90 | 54.53 |
DeepLabv3+ | 77.82 | 49.19 |
TransUNet | 29.97 | 69.14 |
ResUNet | 67.88 | 33.41 |
ResUNet–BFA | 31.27 | 44.77 |
Model | TP | FP | FN | TN | Precision | Recall | F1 Score | MPA | MIoU |
---|---|---|---|---|---|---|---|---|---|
UNet | 816,541 | 355,479 | 280,155 | 12,245,873 | 69.67 | 74.45 | 71.98 | 83.72 | 75.65 |
MultiResUNet | 636,150 | 535,870 | 138,150 | 12,387,878 | 54.28 | 82.16 | 65.37 | 76.59 | 71.70 |
DeepLabv3+ | 837,791 | 334,229 | 236,536 | 12,289,492 | 71.48 | 77.98 | 74.59 | 84.80 | 77.52 |
TransUNet | 887,852 | 284,168 | 282,890 | 12,243,138 | 75.75 | 75.84 | 75.80 | 86.75 | 78.30 |
ResUNet | 846,307 | 325,713 | 205,413 | 12,320,615 | 72.21 | 80.47 | 76.12 | 85.29 | 78.65 |
ResUNet–BFA | 915,268 | 256,752 | 254,173 | 12,271,855 | 78.09 | 78.27 | 78.18 | 88.03 | 80.09 |
Description | TP | FP | FN | TN | Precision | Recall | F1 Score | MPA | MIoU |
---|---|---|---|---|---|---|---|---|---|
SE | 919,423 | 252,597 | 342,749 | 12,183,279 | 78.45 | 72.84 | 75.54 | 87.86 | 78.02 |
SAM | 792,349 | 379,671 | 181,085 | 12,344,943 | 67.61 | 81.40 | 73.86 | 83.08 | 77.11 |
CBAM | 867,388 | 304,632 | 235,142 | 12,290,886 | 74.01 | 78.67 | 76.27 | 86.07 | 78.72 |
BFA | 915,268 | 256,752 | 254,173 | 12,271,855 | 78.09 | 78.27 | 78.18 | 88.03 | 80.09 |
Dataset | Number | Precision | Recall | F1 Score | MPA | MIoU |
---|---|---|---|---|---|---|
Bijie | 770 | 31.82 | 19.09 | 23.86 | 60.69 | 49.31 |
Sichuan and Surrounding Areas Landslide Dataset | 59 | 71.18 | 24.76 | 36.74 | 80.89 | 55.99 |
Landslide4Sense | 3799 | 58.86 | 0.482 | 0.956 | 73.47 | 44.25 |
Ours | 2727 | 57.84 | 52.40 | 54.98 | 75.72 | 63.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Tan, S.; Yang, Y.; Zhang, Q. Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA. Remote Sens. 2025, 17, 995. https://doi.org/10.3390/rs17060995
Zhao Z, Tan S, Yang Y, Zhang Q. Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA. Remote Sensing. 2025; 17(6):995. https://doi.org/10.3390/rs17060995
Chicago/Turabian StyleZhao, Zhenyu, Shucheng Tan, Yiquan Yang, and Qinghua Zhang. 2025. "Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA" Remote Sensing 17, no. 6: 995. https://doi.org/10.3390/rs17060995
APA StyleZhao, Z., Tan, S., Yang, Y., & Zhang, Q. (2025). Landslide Identification from Post-Earthquake High-Resolution Remote Sensing Images Based on ResUNet–BFA. Remote Sensing, 17(6), 995. https://doi.org/10.3390/rs17060995