Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review
Abstract
:1. Introduction
2. Article Inclusion Criteria and Description
3. InSAR Utilizations in the Selected Literature Collection
3.1. Global Distribution Patterns of Articles Utilizing InSAR
3.2. Development and Utilization of Spaceborne InSAR
4. Applications of InSAR in Landslide Monitoring
4.1. Overview of InSAR Methodologies
4.2. Recent Advances in Landslide Monitoring with InSAR
4.2.1. Enhancements in Atmospheric Delay Correction
4.2.2. Expanding Dimensions: 3D Monitoring with InSAR
4.2.3. Integration of InSAR for Landslide Failure Time Prediction
4.2.4. Improvements in Spatial Visibility and Temporal Resolution
4.2.5. Advancements in Integrated Approaches Combining InSAR and Other Techniques
5. InSAR’s Role in Landslide Susceptibility Mapping
5.1. Factors and Their Utilization Frequency
5.2. Utilization of InSAR-Derived Deformation Velocity in LSM
5.3. Reported Importance of InSAR in Landslide Susceptibility Mapping
6. Future Research Directions
6.1. Dynamic Landslide Susceptibility Mapping and Prediction
6.2. Improvement of the Computational Efficiency of InSAR
6.3. Mitigating Decorrelation Effects in Vegetated Areas
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Article | Study Area | Article | Study Area |
---|---|---|---|
[51] | Wumeng Mountain, Guizhou Province, China | [166] | Thompson River Valley, British Columbia, Canada |
[65] | Mao County, Sichuan Province, China | [112] | southeastern Taiwan, China |
[167] | northeastern Chongqing, China | [45] | a landslide in Carlantino, Italy |
[123] | Kahroud Village, Iran | [97] | Zhouqu County, Gansu Province, China |
[121] | Southeast of Alcoy, Spain | [99] | Three Gorges area, China |
[168] | Baihetan hydropower station, China | [169] | junction of Dujiangyan and Wenchuan City, Sichuan Province, China |
[149] | Woda landslide, Tibet, China | [170] | the Poche and La Valette landslides, France |
[171] | Qidashan open-pit mine and Yabaling open-pit mine, Liaoning Province, China | [108] | a landslide located at the north of Shannxi Province, China |
[26] | Cirque de Salazie (CdS), Réunion Island, France | [172] | Shuping landslide, Hubei Province, China |
[173] | Kaiyang landslides, Guizhou Province, China | [44] | two landslides at the foothills of the Greater Caucasus, Russia |
[50] | Jiaju Landslide, Sichuan Province, China | [174] | Fanjiaping landslide, Hubei Province, China |
[175] | Mao County, Sichuan Province, China | [176] | Wudongde hydropower station, Yunnan Province, China |
[71] | Cihaxia hydropower station, Qinghai Province, China | [177] | Damavand Volcano, Iran |
[64] | Lianghekou hydropower station, Sichuan Province, China | [178] | Badong County, Hubei Province, China |
[179] | Temi landslide, junction of Sichuan Province and Tibet, China | [132] | west of Hubei Province, China |
[25] | Mila, Algeria | [140] | Lishui, Zhejiang Province, China |
[49] | Lake Michigan shoreline, US | [29] | southeast of the Tibetan Plateau, China |
[76] | Kikruma landslide and Kotropi landslide, Himalaya region, India. | [141] | Weining County, Guizhou Province, China |
[24] | Valle d’Aosta, Italy | [135] | Wanzhou District, Chongqing, China |
[148] | south of Maskun landslide, Iran | [47] | Yunnan Province, China |
[180] | Mila Basin, Algeria | [130] | a section of Karakoram Highway, Pakistan |
[113] | Jinsha river between the Ahai and Liyuan hydropower station, China | [28] | a section of Karakoram Highway, Pakistan |
[68] | Woda landslide, Tibet, China | [27] | southwestern part of Lincang City, Yunnan Province, China |
[181] | Cheyiping landslide, Yunnan Province, China | [134] | Baihetan Dam, junction of Sichuan and Yunnan Province, China |
[69] | Zongling landslide, Guizhou Province, China | [138] | Hong Kong, China |
[19] | Baige Landslide, Sichuan Province, China | [131] | a road corridor from Polewali to Mambi, Indonesia |
[182] | Gold Basin landslide complex, Washington, US | [133] | Dongchuan district, Kunming, Yunnan Province, China |
[46] | Tijuana—Ensenada Scenic Highway, Baja California, Mexico | [128] | area along the north Lancang River, China |
[115] | Liupanshui, Guiyang, and Tongren, Guizhou Province, China | [143] | Suicheng County, Guangzhou Province, China |
[183] | Eldorado National Forest, in central California, US | [144] | Ludian County, Yunnan Province, China |
[98] | Gushui hydropower station, Yunnan Province, China | [184] | Ghizer valley, Pakistan |
[48] | Dominica | [127] | Chitral valley, Pakistan |
[185] | Danba County, Sichuan Province, China | [145] | Siaolin Village and the Putunpunas River area, Taiwan, China |
[43] | Bureya River, Russia | [137] | Sierra Leone |
[186] | Trishuli River catchment, Nepal | [136] | part of the Pindus Mountain, Greece |
[111] | Jinping, Niexia, and Xishancun landslides, Sichuan Province, China | [142] | a section of Karakoram Highway, Pakistan |
[187] | Slumgullion landslide, Colorada, US | [146] | Uttarakhand, India |
[188] | Wudongde hydropower station, junction of Sichuan and Yunan Province, China | [189] | Carpathian and Subcarpathian Prahova Valley, Romania |
[100] | Deba Valley, Spain | [129] | a section of Karakoram Highway, China |
[190] | Shabkola, Iran | [191] | Sorrentina Peninsula, Italy |
References
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- 2022 Global Natural Disaster Assessment Report. Available online: https://www.preventionweb.net/publication/2022-global-natural-disaster-assessment-report (accessed on 28 May 2024).
- United Nations Papua New Guinea. The United Nations Ongoing Assistance in Response to Landslide Disaster in Enga Province, Papua New Guinea—May 2024. Available online: https://papuanewguinea.un.org/en/269665-united-nations-ongoing-assistance-response-landslide-disaster-enga-province-papua-new-guinea (accessed on 28 May 2024).
- UNISDR, (United Nations International Strategy for Disaster Reduction). Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 28 May 2024).
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Squarzoni, C.; Delacourt, C.; Allemand, P. Differential Single-Frequency GPS Monitoring of the La Valette Landslide (French Alps). Eng. Geol. 2005, 79, 215–229. [Google Scholar] [CrossRef]
- Rawat, M.; Joshi, V.; Rawat, B.; Kumar, K. Landslide Movement Monitoring Using GPS Technology: A Case Study of Bakthang Landslide, Gangtok, East Sikkim, India. J. Dev. Agric. Econ. 2011, 3, 194–200. [Google Scholar]
- Moore, J.R.; Gischig, V.; Button, E.; Loew, S. Rockslide Deformation Monitoring with Fiber Optic Strain Sensors. Nat. Hazards Earth Syst. Sci. 2010, 10, 191–201. [Google Scholar] [CrossRef]
- Dixon, N.; Spriggs, M.P.; Smith, A.; Meldrum, P.; Haslam, E. Quantification of Reactivated Landslide Behaviour Using Acoustic Emission Monitoring. Landslides 2015, 12, 549–560. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Pradhan, B.; Alamri, A.M. IoT-Based Geotechnical Monitoring of Unstable Slopes for Landslide Early Warning in the Darjeeling Himalayas. Sensors 2020, 20, 2611. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, L.; Zhao, T.; Han, J.; Li, H.; Fang, J. Automatic Landslide Detection from Remote-Sensing Imagery Using a Scene Classification Method Based on BoVW and pLSA. Int. J. Remote Sens. 2013, 34, 45–59. [Google Scholar] [CrossRef]
- Golovko, D.; Roessner, S.; Behling, R.; Wetzel, H.-U.; Kleinschmit, B. Evaluation of Remote-Sensing-Based Landslide Inventories for Hazard Assessment in Southern Kyrgyzstan. Remote Sens. 2017, 9, 943. [Google Scholar] [CrossRef]
- Niu, C.; Ma, K.; Shen, X.; Wang, X.; Xie, X.; Tan, L.; Xue, Y. Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images. Land 2023, 12, 313. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.; Delacourt, C. Correlation of Satellite Image Time-Series for the Detection and Monitoring of Slow-Moving Landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q. Three-Dimensional Information Extraction from GaoFen-1 Satellite Images for Landslide Monitoring. Geomorphology 2018, 309, 77–85. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. In NASA (JPL Aircraft SAR Workshop Proc.); NASA: Washington, DC, USA, 1985. [Google Scholar]
- Achache, J.; Fruneau, B.; Delacourt, C. Applicability of SAR Interferometry for Monitoring of Landslides. In Proceedings of the Second ERS Applications Workshop, London, UK, 6–8 December 1996; Volume 383, p. 165. [Google Scholar]
- Cai, J.; Liu, G.; Jia, H.; Zhang, B.; Wu, R.; Fu, Y.; Xiang, W.; Mao, W.; Wang, X.; Zhang, R. A New Algorithm for Landslide Dynamic Monitoring with High Temporal Resolution by Kalman Filter Integration of Multiplatform Time-Series InSAR Processing. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102812. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Zhang, J.; Wang, Y.; Wang, L.; Tang, B. Efficient Identification and Monitoring of Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, L.; Cheng, Y.; Liu, X.; Zhang, R. Active Thickness Estimation and Failure Simulation of Translational Landslide Using Multi-Orbit InSAR Observations: A Case Study of the Xiongba Landslide. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103801. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Yang, M.; Liao, M. Complex Surface Displacements of the Nanyu Landslide in Zhouqu, China Revealed by Multi-Platform InSAR Observations. Eng. Geol. 2023, 317, 107069. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Wei, S. Study on InSAR Image Fusion for Improved Visualization of Active Landslides in Alpine Valley Areas: A Case in the Batang Region, China. Comput. Geosci. 2024, 186, 105481. [Google Scholar] [CrossRef]
- Reale, D.; Verde, S.; Calo, F.; Imperatore, P.; Pauciullo, A.; Pepe, A.; Zamparelli, V.; Sansosti, E.; Fornaro, G. Multipass InSAR with Multiple Bands: Application to Landslides Mapping and Monitoring. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 July 2022; pp. 4510–4513. [Google Scholar]
- Smail, T.; Abed, M.; Mebarki, A.; Lazecky, M. Earthquake-Induced Landslide Monitoring and Survey by Means of InSAR. Nat. Hazards Earth Syst. Sci. 2022, 22, 1609–1625. [Google Scholar] [CrossRef]
- De Michele, M.; Raucoules, D.; Rault, C.; Aunay, B.; Foumelis, M. Short Communication: Potential of Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Offset Tracking in Monitoring Post-Cyclonic Landslide Activities on Réunion. Earth Surf. Dynam. 2023, 11, 451–460. [Google Scholar] [CrossRef]
- Deng, Y.; Zuo, X.; Li, Y.; Zhou, X. Landslide Susceptibility Evaluation of Bayesian Optimized CNN Gengma Seismic Zone Considering InSAR Deformation. Appl. Sci. 2023, 13, 11388. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Zhou, Y.; Daud, H. Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data. Remote Sens. 2023, 15, 4703. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Zhao, Z.; Liu, X. Performance Comparison of Landslide Susceptibility Mapping under Multiple Machine-Learning Based Models Considering InSAR Deformation: A Case Study of the Upper Jinsha River. Geomat. Nat. Hazards Risk 2023, 14, 2212833. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Mukherjee, K. Review on InSAR Based Displacement Monitoring of Indian Himalayas: Issues, Challenges and Possible Advanced Alternatives. Geocarto Int. 2017, 32, 298–321. [Google Scholar] [CrossRef]
- Soldato, M.D.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of Works Combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Coutinho, R.; Alves, J.; Moreira, H.; Pontes, J.; Aragão Júnior, W. Applicability of the InSAR Technique for Slope Monitoring. S&R 2023, 46, e2023008023. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A Comprehensive Review of Machine Learning-based Methods in Landslide Susceptibility Mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Daleles Rennó, C. Land Use and Land Cover as a Conditioning Factor in Landslide Susceptibility: A Literature Review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Bisht, S.; Rawat, K.S. A Review of Statistical Approaches Used for Landslide Susceptibility Analysis with the Help of Remote Sensing and GIS Technology. Acta Sci. Pol. Form. Circumiectus 2023, 22, 83–96. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, K. Landslide Susceptibility Assessment Using Remote Sensing and GIS-a Review. J. Min. Environ. 2023, 70, 133–154. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A Global Landslide Catalog for Hazard Applications: Method, Results, and Limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. In International Yearbook of Cartography; George Philip: River Vale, NJ, USA, 1967; Volume 7, pp. 186–190. [Google Scholar]
- Bondur, V.G.; Zakharova, L.N.; Zakharov, A.I. Monitoring the State of the Landslide Zone on the Bureya River in 2018–2019 with Radar and Optical Satellite Images. Izv. Atmos. Ocean. Phys. 2020, 56, 1520–1527. [Google Scholar] [CrossRef]
- Mikhailov, V.O.; Kiseleva, E.A.; Smol’yaninova, E.I.; Dmitriev, P.N.; Golubev, V.I.; Isaev, Y.S.; Dorokhin, K.A.; Timoshkina, E.P.; Khairetdinov, S.A. Some Problems of Landslide Monitoring Using Satellite Radar Imagery with Different Wavelengths: Case Study of Two Landslides in the Region of Greater Sochi. Izv. Phys. Solid Earth 2014, 50, 576–587. [Google Scholar] [CrossRef]
- Bovenga, F.; Pasquariello, G.; Pellicani, R.; Refice, A.; Spilotro, G. Landslide Monitoring for Risk Mitigation by Using Corner Reflector and Satellite SAR Interferometry: The Large Landslide of Carlantino (Italy). CATENA 2017, 151, 49–62. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Palacios, D.G.; Delgado Argote, L.A.; Ortega, A.G. Application of Satellite SAR Interferometry for the Detection and Monitoring of Landslides along the Tijuana—Ensenada Scenic Highway, Baja California, Mexico. J. S. Am. Earth Sci. 2021, 107, 103030. [Google Scholar] [CrossRef]
- Liu, M.; Xu, B.; Li, Z.; Mao, W.; Zhu, Y.; Hou, J.; Liu, W. Landslide Susceptibility Zoning in Yunnan Province Based on SBAS-InSAR Technology and a Random Forest Model. Remote Sens. 2023, 15, 2864. [Google Scholar] [CrossRef]
- Fobert, M.; Singhroy, V.; Spray, J. InSAR Monitoring of Landslide Activity in Dominica. Remote Sens. 2021, 13, 815. [Google Scholar] [CrossRef]
- Sataer, G.; Sultan, M.; Emil, M.K.; Yellich, J.A.; Palaseanu-Lovejoy, M.; Becker, R.; Gebremichael, E.; Abdelmohsen, K. Remote Sensing Application for Landslide Detection, Monitoring along Eastern Lake Michigan (Miami Park, MI). Remote Sens. 2022, 14, 3474. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Q.; Jiao, J. Deformations Monitoring in Complicated-Surface Areas by Adaptive Distributed Scatterer InSAR Combined with Land Cover: Taking the Jiaju Landslide in Danba, China as an Example. ISPRS J. Photogramm. Remote Sens. 2022, 186, 102–122. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, B.; Xie, C.; Guo, Y.; Fang, H.; Yang, Y.; Wang, Q.; Zhang, M.; Shen, C.; Wei, R. Multi-Temporal InSAR Deformation Monitoring Zongling Landslide Group in Guizhou Province Based on the Adaptive Network Method. Sustainability 2023, 15, 894. [Google Scholar] [CrossRef]
- Reuveni, Y.; Bock, Y.; Tong, X.; Moore, A.W. Calibrating Interferometric Synthetic Aperture Radar (InSAR) Images with Regional GPS Network Atmosphere Models. Geophys. J. Int. 2015, 202, 2106–2119. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Li, Z.; Muller, J.-P.; Cross, P.; Fielding, E.J. Interferometric Synthetic Aperture Radar (InSAR) Atmospheric Correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR Integration. J. Geophys. Res. Solid Earth 2005, 110, B034110. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, W.B.; Feng, G.C.; Hu, J.; Wang, C.C.; Ding, X.L.; Zhu, J.J. Correcting Atmospheric Effects on InSAR with MERIS Water Vapour Data and Elevation-Dependent Interpolation Model. Geophys. J. Int. 2012, 189, 898–910. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.-j. Correction of Tropospheric Phase Delay in Time Series InSAR Using WRF Model for Monitoring Shinmoedake Volcano. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21 July 2013; pp. 137–140. [Google Scholar]
- Kinoshita, Y.; Furuya, M.; Hobiger, T.; Ichikawa, R. Are Numerical Weather Model Outputs Helpful to Reduce Tropospheric Delay Signals in InSAR Data? J. Geod. 2013, 87, 267–277. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, W.; Xu, B.; Wei, G. Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California. Sensors 2019, 19, 3894. [Google Scholar] [CrossRef]
- Kirui, P.; Riedel, B.; Gerke, M. Performance of numerical weather products for InSAR tropospheric correction: A case study of a tropical region. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, V-3-2022, 115–122. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Ding, X.; Lu, Z.; Li, X. Toward Mitigating Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided Joint Model. IEEE Trans. Geosci. Remote Sens. 2019, 57, 291–303. [Google Scholar] [CrossRef]
- Murray, K.D.; Lohman, R.B.; Bekaert, D.P.S. Cluster-Based Empirical Tropospheric Corrections Applied to InSAR Time Series Analysis. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2204–2212. [Google Scholar] [CrossRef]
- Lin, Y.N.; Simons, M.; Hetland, E.A.; Muse, P.; DiCaprio, C. A Multiscale Approach to Estimating Topographically Correlated Propagation Delays in Radar Interferograms. Geochem. Geophys. Geosystems 2010, 11, Q09002. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Hooper, A.; Wright, T.J. A Spatially Variable Power Law Tropospheric Correction Technique for InSAR Data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, J.; Zhang, L.; Zhang, L.; Deng, S.; Zhang, G.; Liao, M.; Gong, J. Refined InSAR Tropospheric Delay Correction for Wide-Area Landslide Identification and Monitoring. Remote Sens. Environ. 2022, 275, 113013. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, K.; Pirasteh, S.; Li, R.; Xiang, J.; Li, Z. InSAR Spatial-Heterogeneity Tropospheric Delay Correction in Steep Mountainous Areas Based on Deep Learning for Landslides Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5215014. [Google Scholar] [CrossRef]
- Kirui, P.K.; Reinosch, E.; Isya, N.; Riedel, B.; Gerke, M. Mitigation of Atmospheric Artefacts in Multi Temporal InSAR: A Review. PFG—J. Photogramm. Remote Sens. Geoinform. Sci. 2021, 89, 251–272. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Z.; Schulz, W.H.; Kim, J. Twelve-Year Dynamics and Rainfall Thresholds for Alternating Creep and Rapid Movement of the Hooskanaden Landslide from Integrating InSAR, Pixel Offset Tracking, and Borehole and Hydrological Measurements. JGR Earth Surf. 2020, 125, e2020JF005640. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and Stability Analysis of the Deformation in the Woda Landslide Area in Tibet, China by the DS-InSAR Method. Remote Sens. 2022, 14, 532. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Sun, R.; Chen, L.; Wang, B.; Li, B. Two-Dimensional Deformation Monitoring of Karst Landslides in Zongling, China, with Multi-Platform Distributed Scatterer InSAR Technique. Landslides 2022, 19, 1767–1777. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, L.; Shi, X.; Liao, M.; Dong, J. Measurement of the Three-Dimensional Surface Deformation of the Jiaju Landslide Using a Surface-Parallel Flow Model. Remote Sens. Lett. 2019, 10, 776–785. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Li, B. Deformation Prediction of Cihaxia Landslide Using InSAR and Deep Learning. Water 2022, 14, 3990. [Google Scholar] [CrossRef]
- Kuang, P.; Li, R.; Huang, Y.; Wu, J.; Luo, X.; Zhou, F. Landslide Displacement Prediction via Attentive Graph Neural Network. Remote Sens. 2022, 14, 1919. [Google Scholar] [CrossRef]
- Lacroix, P.; Huanca, J.; Albinez, L.; Taipe, E. Precursory Motion and Time-of-Failure Prediction of the Achoma Landslide, Peru, from High Frequency PlanetScope Satellites. Geophys. Res. Lett. 2023, 50, e2023GL105413. [Google Scholar] [CrossRef]
- Sharifi, S.; Macciotta, R.; Hendry, M.T. Critical Assessment of Landslide Failure Forecasting Methods with Case Histories: A Comparative Study of INV, MINV, SLO, and VOA. Landslides 2024, 21, 1629–1643. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.M.; Dijkstra, T.A.; Jordan, C.J.; Chen, G.; Zeng, R.Q.; Novellino, A. Forecasting the Magnitude of Potential Landslides Based on InSAR Techniques. Remote Sens. Environ. 2020, 241, 111738. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Khanna, K.; Jain, N.; Kumar, K.V. Time and Path Prediction of Landslides Using InSAR and Flow Model. Remote Sens. Environ. 2022, 271, 112899. [Google Scholar] [CrossRef]
- Chen, C.; Fan, L. An Attribution Deep Learning Interpretation Model for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area. IEEE Trans. Geosci. Remote Sens. 2023, 61, 3000515. [Google Scholar] [CrossRef]
- Chen, C.; Fan, L. Selection of Contributing Factors for Predicting Landslide Susceptibility Using Machine Learning and Deep Learning Models. Stoch. Environ. Res. Risk Assess. 2023. [Google Scholar] [CrossRef]
- Saito, M. Forecasting the Time of Occurrence of a Slope Failure. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; pp. 537–541. [Google Scholar]
- Fukuzono, T. A New Method for Predicting the Failure Time of Slope. In Proceedings of the IVth International Conference and Field Workshop on Landslides, Tokyo, Japan, 23–31 August 1985; pp. 145–150. [Google Scholar]
- Voight, B. A Method for Prediction of Volcanic Eruptions. Nature 1988, 332, 125–130. [Google Scholar] [CrossRef]
- Qi, X.; Cao, R.; Peng, D. An Improvement Velocity Inverse Method for Predicting the Slope Imminent Failure Time. Geomat. Nat. Hazards Risk 2023, 14, 2239991. [Google Scholar] [CrossRef]
- Zhou, X.-P.; Liu, L.-J.; Xu, C. A Modified Inverse-Velocity Method for Predicting the Failure Time of Landslides. Eng. Geol. 2020, 268, 105521. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the Use of Inverse Velocity Method as a Tool for Setting Alarm Thresholds and Forecasting Landslides and Structure Collapses. Landslides 2017, 14, 517–534. [Google Scholar] [CrossRef]
- Iwata, N.; Sasahara, K.; Watanabe, S. Improvement of Fukuzono’s Model for Time Prediction of an Onset of a Rainfall-Induced Landslide. In Advancing Culture of Living with Landslides; Mikoš, M., Arbanas, Ž., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–110. ISBN 978-3-319-53486-2. [Google Scholar]
- Moretto, S.; Bozzano, F.; Esposito, C.; Mazzanti, P.; Rocca, A. Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR Interferometry. Geosciences 2017, 7, 36. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef]
- Shankar, H.; Singh, D.; Chauhan, P. Landslide Deformation and Temporal Prediction of Slope Failure in Himalayan Terrain Using PSInSAR and Sentinel-1 Data. Adv. Space Res. 2022, 70, 3917–3931. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Hao, S.; Yang, H.; Elsworth, D. An Accelerating Precursor to Predict “Time-to-Failure” in Creep and Volcanic Eruptions. J. Volcanol. Geotherm. Res. 2017, 343, 252–262. [Google Scholar] [CrossRef]
- Mufundirwa, A.; Fujii, Y.; Kodama, J. A New Practical Method for Prediction of Geomechanical Failure-Time. Int. J. Rock Mech. Min. Sci. 2010, 47, 1079–1090. [Google Scholar] [CrossRef]
- Hao, S.; Liu, C.; Lu, C.; Elsworth, D. A Relation to Predict the Failure of Materials and Potential Application to Volcanic Eruptions and Landslides. Sci. Rep. 2016, 6, 27877. [Google Scholar] [CrossRef]
- Zeng, P.; Feng, B.; Dai, K.; Li, T.; Fan, X.; Sun, X. Can Satellite InSAR Innovate the Way of Large Landslide Early Warning? Eng. Geol. 2024, 342, 107771. [Google Scholar] [CrossRef]
- Li, J.; Fan, C.; Zhao, K.; Zhang, Z.; Duan, P. Landslide Displacement Prediction Using Time Series InSAR with Combined LSTM and TCN: Application to the Xiao Andong Landslide, Yunnan Province, China. Nat. Hazards 2024. [Google Scholar] [CrossRef]
- Li, Q.; Yao, C.; Yao, X.; Zhou, Z.; Ren, K. Time Series Prediction of Reservoir Bank Slope Deformation Based on Informer and InSAR: A Case Study of Dawanzi Landslide in the Baihetan Reservoir Area, China. Remote Sens. 2024, 16, 2688. [Google Scholar] [CrossRef]
- Ma, K.; Weng, H.; Chen, Y.; Sarajpoor, S.; Shen, Y. A Dynamic Landslide Warning Model Based on Grey System Theory. IEEE Access 2025, 13, 22407–22419. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, J.; Zhang, L.; Ding, X. Towards Slow-Moving Landslide Monitoring by Integrating Multi-Sensor InSAR Time Series Datasets: The Zhouqu Case Study, China. Remote Sens. 2016, 8, 908. [Google Scholar] [CrossRef]
- Guo, R.; Li, S.; Chen, Y.; Li, X.; Yuan, L. Identification and Monitoring Landslides in Longitudinal Range-Gorge Region with InSAR Fusion Integrated Visibility Analysis. Landslides 2021, 18, 551–568. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, M.; Balz, T.; Shi, X.; Jiang, Y. Monitoring Landslide Activities in the Three Gorges Area with Multi-Frequency Satellite SAR Data Sets. In Modern Technologies for Landslide Monitoring and Prediction; Scaioni, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 181–208. [Google Scholar]
- Bru, G.; Escayo, J.; Fernández, J.; Mallorqui, J.; Iglesias, R.; Sansosti, E.; Abajo, T.; Morales, A. Suitability Assessment of X-Band Satellite SAR Data for Geotechnical Monitoring of Site Scale Slow Moving Landslides. Remote Sens. 2018, 10, 936. [Google Scholar] [CrossRef]
- Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J. High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 1171–1176. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Li, Z.; Zhu, J.; Wu, L. Fusing Adjacent-Track InSAR Datasets to Densify the Temporal Resolution of Time-Series 3-D Displacement Estimation over Mining Areas with a Prior Deformation Model and a Generalized Weighting Least-Squares Method. J. Geod. 2020, 94, 47. [Google Scholar] [CrossRef]
- Cascini, L.; Scoppettuolo, M.R.; Babilio, E. Forecasting the Landslide Evolution: From Theory to Practice. Landslides 2022, 19, 2839–2851. [Google Scholar] [CrossRef]
- Mazzanti, P.; Bozzano, F.; Cipriani, I.; Prestininzi, A. New Insights into the Temporal Prediction of Landslides by a Terrestrial SAR Interferometry Monitoring Case Study. Landslides 2015, 12, 55–68. [Google Scholar] [CrossRef]
- Manconi, A.; Giordan, D. Landslide Failure Forecast in Near-Real-Time. Geomat. Nat. Hazards Risk 2016, 7, 639–648. [Google Scholar] [CrossRef]
- Liu, N.; Dai, W.; Santerre, R.; Hu, J.; Shi, Q.; Yang, C. High Spatio-Temporal Resolution Deformation Time Series with the Fusion of InSAR and GNSS Data Using Spatio-Temporal Random Effect Model. IEEE Trans. Geosci. Remote Sens. 2019, 57, 364–380. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Wu, Y.; Zhao, Z.; E, Y. Applied Research on InSAR and GPS Data Fusion in Deformation Monitoring. Sci. Program. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, F.; Qu, W. Landslide Monitoring by Combining of CR-InSAR and GPS Techniques. Adv. Space Res. 2014, 53, 430–439. [Google Scholar] [CrossRef]
- Komac, M.; Holley, R.; Mahapatra, P.; Van Der Marel, H.; Bavec, M. Coupling of GPS/GNSS and Radar Interferometric Data for a 3D Surface Displacement Monitoring of Landslides. Landslides 2015, 12, 241–257. [Google Scholar] [CrossRef]
- Huang, J.; Du, W.; Jin, S.; Xie, M. Integrated PSInSAR and GNSS for 3D Displacement in the Wudongde Area. Land 2024, 13, 429. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Liao, M.; Gong, J. Improved Correction of Seasonal Tropospheric Delay in InSAR Observations for Landslide Deformation Monitoring. Remote Sens. Environ. 2019, 233, 111370. [Google Scholar] [CrossRef]
- Chen, R.; Lee, C.; Yin, H.; Huang, H.; Cheng, K.; Lin, C. Monitoring the Deep-Seated Landslides by Using ALOS/PALSAR Satellite Imagery in the Disaster Area of 2009 Typhoon Morakot, Taiwan. In Advancing Culture of Living with Landslides; Mikos, M., Arbanas, Z., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 239–247. [Google Scholar]
- Ma, Y.; Li, F.; Wang, Z.; Zou, X.; An, J.; Li, B. Landslide Assessment and Monitoring along the Jinsha River, Southwest China, by Combining InSAR and GPS Techniques. J. Sens. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Yi, Z.; Xingmin, M.; Allesandro, N.; Tom, D.; Guan, C.; Colm, J.; Yuanxi, L.; Xiaojun, S. Characterization of Pre-Failure Deformation and Evolution of a Large Earthflow Using InSAR Monitoring and Optical Image Interpretation. Landslides 2022, 19, 35–50. [Google Scholar] [CrossRef]
- Li, G.; Hu, B.; Li, H.; Lu, F. Early Identifying and Monitoring Landslides in Guizhou Province with InSAR and Optical Remote Sensing. J. Sens. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, C.; Dong, X.; Li, W.; Lu, H.; Fu, H.; Liu, X. Mapping and Characterizing Displacements of Landslides with InSAR and Airborne LiDAR Technologies: A Case Study of Danba County, Southwest China. Remote Sens. 2021, 13, 4234. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayan, A.B.; Dwivedi, R.; Dikshit, O.; Nagarajan, B. Monitoring of Landslide Activity at the Sirobagarh Landslide, Uttarakhand, India, Using LiDAR, SAR Interferometry and Geodetic Surveys. Geocarto Int. 2020, 35, 535–558. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Raspini, F.; Xu, Q.; Peng, Y.; Ju, Y.; Zheng, Y.; Casagli, N. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides 2021, 18, 251–265. [Google Scholar] [CrossRef]
- Jiao, Q.; Jiang, W.; Qian, H.; Li, Q. Research on Characteristics and Failure Mechanism of Guizhou Shuicheng Landslide Based on InSAR and UAV Data. Nat. Hazards Res. 2022, 2, 17–24. [Google Scholar] [CrossRef]
- Necula, N.; Niculiță, M.; Fiaschi, S.; Genevois, R.; Riccardi, P.; Floris, M. Assessing Urban Landslide Dynamics through Multi-Temporal InSAR Techniques and Slope Numerical Modeling. Remote Sens. 2021, 13, 3862. [Google Scholar] [CrossRef]
- Tomás, R.; Díaz, E.; Szeibert, W.T.; Liu, X.; Lopez-Sanchez, J.M.; Zhao, C. Geomorphological Characterization, Remote Sensing Monitoring, and Modeling of a Slow-Moving Landslide in Alcoy (Southern Spain). Landslides 2023, 20, 1293–1301. [Google Scholar] [CrossRef]
- Rana, H.; Babu, G.L.S. Regional Back Analysis of Landslide Events Using TRIGRS Model and Rainfall Threshold: An Approach to Estimate Landslide Hazard for Kodagu, India. Bull. Eng. Geol. Environ. 2022, 81, 160. [Google Scholar] [CrossRef]
- Yarmohammad Touski, M.; Dehghani, M.; Veiskarami, M. Monitoring and Modeling of a Landslide in Kahroud, Iran, by InSAR Measurements and Slope Stability Analysis. Nat. Hazards 2023, 117, 2249–2268. [Google Scholar] [CrossRef]
- Johari, A.; Hooshmand Nejad, A.; Mousavi, S. Probabilistic Model of Unsaturated Slope Stability Considering the Uncertainties of Soil-Water Characteristic Curve. Sci. Iran. 2018, 25, 2039–2050. [Google Scholar] [CrossRef]
- Crozier, M.J. Landslides: Causes, Consequences and Environment; Croom Helm Australia Pty. Ltd.: London, UK, 1986. [Google Scholar]
- Moragues, S.; Lenzano, M.G.; Jeanneret, P.; Gil, V.; Lannutti, E. Landslide Susceptibility Mapping in the Northern Part of Los Glaciares National Park, Southern Patagonia, Argentina Using Remote Sensing, GIS and Frequency Ratio Model. Quat. Sci. Adv. 2024, 13, 100146. [Google Scholar] [CrossRef]
- Hussain, S.; Hongxing, S.; Ali, M.; Sajjad, M.M.; Ali, M.; Afzal, Z.; Ali, S. Optimized Landslide Susceptibility Mapping and Modelling Using PS-InSAR Technique: A Case Study of Chitral Valley, Northern Pakistan. Geocarto Int. 2022, 37, 5227–5248. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, B.; Huang, H.; Chen, L.; Li, Y.; Yang, D. SBAS-InSAR-Based Landslide Susceptibility Mapping Along the North Lancang River, Tibetan Plateau. Front. Earth Sci. 2022, 10, 901889. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed]
- Kulsoom, I.; Hua, W.; Hussain, S.; Chen, Q.; Khan, G.; Shihao, D. SBAS-InSAR Based Validated Landslide Susceptibility Mapping along the Karakoram Highway: A Case Study of Gilgit-Baltistan, Pakistan. Sci. Rep. 2023, 13, 3344. [Google Scholar] [CrossRef] [PubMed]
- Arsyad, A.; Muhiddin, A.B. Landslide Susceptibility Mapping for Road Corridors Using Coupled InSAR and GIS Statistical Analysis. Nat. Hazards Rev. 2023, 24, 05023007. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S.; Chen, Z.; Liu, Y.; Xu, Z.; Zhao, R. Landslide Susceptibility Evaluation Integrating Weight of Evidence Model and InSAR Results, West of Hubei Province, China. Egypt. J. Remote Sens. Space Sci. 2023, 26, 95–106. [Google Scholar] [CrossRef]
- Zhu, Z.; Gan, S.; Yuan, X.; Zhang, J. Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China). Sensors 2022, 22, 5587. [Google Scholar] [CrossRef]
- Dai, K.; Chen, C.; Shi, X.; Wu, M.; Feng, W.; Xu, Q.; Liang, R.; Zhuo, G.; Li, Z. Dynamic Landslides Susceptibility Evaluation in Baihetan Dam Area during Extensive Impoundment by Integrating Geological Model and InSAR Observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103157. [Google Scholar] [CrossRef]
- Miao, F.; Ruan, Q.; Wu, Y.; Qian, Z.; Kong, Z.; Qin, Z. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sens. 2023, 15, 5427. [Google Scholar] [CrossRef]
- Kontoes, C.; Loupasakis, C.; Papoutsis, I.; Alatza, S.; Poyiadji, E.; Ganas, A.; Psychogyiou, C.; Kaskara, M.; Antoniadi, S.; Spanou, N. Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data. Land 2021, 10, 402. [Google Scholar] [CrossRef]
- Kursah, M.B.; Wang, Y.; Bayoh, H.D.; Tarawally, M. A Comparative Study on the Predictive Ability of Archived and SBAS-InSAR Inventories for Landslide Susceptibility Using Frequency Ratio Model in Western Area, Sierra Leone. Environ. Earth Sci. 2021, 80, 387. [Google Scholar] [CrossRef]
- Chen, L.; Ma, P.; Yu, C.; Zheng, Y.; Zhu, Q.; Ding, Y. Landslide Susceptibility Assessment in Multiple Urban Slope Settings with a Landslide Inventory Augmented by InSAR Techniques. Eng. Geol. 2023, 327, 107342. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, K.; Song, T.; Bai, J.; Zhang, W.; Chen, J.; Song, S. Comparative Study on Potential Landslide Identification with ALOS-2 and Sentinel-1A Data in Heavy Forest Reach, Upstream of the Jinsha River. Remote Sens. 2022, 14, 1962. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, M.; Zhan, J.; Zhuang, J.; Sun, Y.; Yu, Q.; Yu, Z. Refined Landslide Susceptibility Mapping by Integrating the SHAP-CatBoost Model and InSAR Observations: A Case Study of Lishui, Southern China. Appl. Sci. 2023, 13, 12817. [Google Scholar] [CrossRef]
- Yang, Q.; Chang, Z.; Xie, C.; Shen, C.; Tian, B.; Fang, H.; Guo, Y.; Zhu, Y.; Zhou, D.; Yao, X.; et al. Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China. Land 2023, 12, 1444. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Wang, R.; Shoaib, M. PS-InSAR-Based Validated Landslide Susceptibility Mapping along Karakorum Highway, Pakistan. Remote Sens. 2021, 13, 4129. [Google Scholar] [CrossRef]
- Yuan, R.; Chen, J. A Hybrid Deep Learning Method for Landslide Susceptibility Analysis with the Application of InSAR Data. Nat. Hazards 2022, 114, 1393–1426. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, J.; Li, D.; Zhao, Z.; Zhou, D.; Xi, W.; Li, Y. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China. Sensors 2022, 22, 8041. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chen, Y.-K.; Yang, K.-H.; Chen, C.-S.; Han, J.-Y. Integrating InSAR Observables and Multiple Geological Factors for Landslide Susceptibility Assessment. Appl. Sci. 2021, 11, 7289. [Google Scholar] [CrossRef]
- Devara, M.; Tiwari, A.; Dwivedi, R. Landslide Susceptibility Mapping Using MT-InSAR and AHP Enabled GIS-Based Multi-Criteria Decision Analysis. Geomat. Nat. Hazards Risk 2021, 12, 675–693. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating Slow-Moving Landslides in the Zhouqu Region of China Using InSAR Time Series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Pourkhosravani, M.; Mehrabi, A.; Pirasteh, S.; Derakhshani, R. Monitoring of Maskun Landslide and Determining Its Quantitative Relationship to Different Climatic Conditions Using D-InSAR and PSI Techniques. Geomat. Nat. Hazards Risk 2022, 13, 1134–1153. [Google Scholar] [CrossRef]
- Li, B.; Jiang, W.; Li, Y.; Luo, Y.; Jiao, Q.; Zhang, Q. Monitoring and Analysis of Woda Landslide (China) Using InSAR and Sentinel-1 Data. Adv. Space Res. 2023, 72, 1789–1802. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Gan, L.; Wang, Y.; Motagh, M.; Roessner, S.; Hu, X.; Yin, K. A Novel Framework for Landslide Displacement Prediction Using MT-InSAR and Machine Learning Techniques. Eng. Geol. 2024, 334, 107497. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, H.; Li, C.; Gong, W.; Zhou, B.; Zhang, Y. Deformation Stage Division and Early Warning of Landslides Based on the Statistical Characteristics of Landslide Kinematic Features. Landslides 2024, 21, 717–735. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, J. A Time Series Processing Chain for Geological Disasters Based on a GPU-Assisted Sentinel-1 InSAR Processor. Nat. Hazards 2022, 111, 803–815. [Google Scholar] [CrossRef]
- Zhang, W.; You, H.; Wang, C.; Zhang, H.; Tang, Y. Parallel Optimization for Large Scale Interferometric Synthetic Aperture Radar Data Processing. Remote Sens. 2023, 15, 1850. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, P.; Zhang, X.; Ye, G. Efficient Management and Processing of Massive InSAR Images Using an HPC-Based Cloud Platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2866–2876. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Dwivedi, R.; Narayan, A.B.; Tiwari, A.; Singh, A.K.; Dikshit, O. Optimal Estimation of Interferometric Phase for Measuring Surface Deformation. Int. J. Remote Sens. 2017, 38, 1339–1349. [Google Scholar] [CrossRef]
- Fornaro, G.; Verde, S.; Reale, D.; Pauciullo, A. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2050–2065. [Google Scholar] [CrossRef]
- Verde, S.; Reale, D.; Pauciullo, A.; Fornaro, G. Improved Small Baseline Processing by Means of CAESAR Eigen-Interferograms Decomposition. ISPRS J. Photogramm. Remote Sens. 2018, 139, 1–13. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmuller, U.; Askne, J.I.H. Signatures of ERS–Envisat Interferometric SAR Coherence and Phase of Short Vegetation: An Analysis in the Case of Maize Fields. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1702–1713. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Q.; Hu, J. Quantitatively Estimating of InSAR Decorrelation Based on Landsat-Derived NDVI. Remote Sens. 2021, 13, 2440. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, R.; Xu, Z.; Cai, Z.; Yuan, Y. Quantitative Estimation of Sentinel-1A Interferometric Decorrelation Using Vegetation Index. Front. Earth Sci. 2022, 10, 1016491. [Google Scholar] [CrossRef]
- Guo, J.; Xi, W.; Yang, Z.; Huang, G.; Xiao, B.; Jin, T.; Hong, W.; Gui, F.; Ma, Y. Study on Optimization Method for InSAR Baseline Considering Changes in Vegetation Coverage. Sensors 2024, 24, 4783. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Dong, J.; Mallorqui, J.J.; Liao, M.; Zhang, L.; Gong, J. Sequential Polarimetric Phase Optimization Algorithm for Dynamic Deformation Monitoring of Landslides. ISPRS J. Photogramm. Remote Sens. 2024, 218, 84–100. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, S.; Ding, X.; Wang, C.; Zhu, J.; Li, Q. Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China. Remote Sens. 2021, 13, 3091. [Google Scholar] [CrossRef]
- JAXA Launches ALOS-4 Satellite to Revolutionize Disaster Management|UN-SPIDER Knowledge Portal. Available online: https://www.un-spider.org/news-and-events/news/jaxa-launches-alos-4-satellite-revolutionize-disaster-management (accessed on 20 February 2025).
- Huntley, D.; Bobrowsky, P.; Charbonneau, F.; Journault, J.; Macciotta, R.; Hendry, M. Innovative Landslide Change Detection Monitoring: Application of Space-Borne InSAR Techniques in the Thompson River Valley, British Columbia, Canada. In Advancing Culture of Living with Landslides; Mikos, M., Arbanas, Z., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 219–229. [Google Scholar]
- Zhang, X.; Chen, L.; Zhou, C. Deformation Monitoring and Trend Analysis of Reservoir Bank Landslides by Combining Time-Series InSAR and Hurst Index. Remote Sens. 2023, 15, 619. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Z.; Xi, W.; Guo, J.; Yang, H. InSAR-Based Method for Deformation Monitoring of Landslide Source Area in Baihetan Reservoir, China. Front. Earth Sci. 2023, 11, 1253272. [Google Scholar] [CrossRef]
- Tang, P.; Chen, F.; Guo, H.; Tian, B.; Wang, X.; Ishwaran, N. Large-Area Landslides Monitoring Using Advanced Multi-Temporal InSAR Technique over the Giant Panda Habitat, Sichuan, China. Remote Sens. 2015, 7, 8925–8949. [Google Scholar] [CrossRef]
- Schlögel, R.; Doubre, C.; Malet, J.-P.; Masson, F. Landslide Deformation Monitoring with ALOS/PALSAR Imagery: A D-InSAR Geomorphological Interpretation Method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- He, L.; Pei, P.; Zhang, X.; Qi, J.; Cai, J.; Cao, W.; Ding, R.; Mao, Y. Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sens. 2023, 15, 3906. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.-P. Evaluating Sub-Pixel Offset Techniques as an Alternative to D-InSAR for Monitoring Episodic Landslide Movements in Vegetated Terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Li, B.; Gao, Y.; Chen, L.; Liu, D. Monitoring Spatiotemporal Evolution of Kaiyang Landslides Induced by Phosphate Mining Using Distributed Scatterers InSAR Technique. Landslides 2023, 20, 695–706. [Google Scholar] [CrossRef]
- Fan, J.; Xia, Y.; Zhao, H.; Li, M.; Wang, Y.; Guo, X.; Tu, P.; Liu, G.; Lin, H. Monitoring of Landslide Deformation Based on the Coherent Targets of High Resolution InSAR Data. In Proceedings of the 18th National Symposium on Remote Sensing of China, Wuhan, China, 20–23 September 2012; p. 91580K. [Google Scholar]
- Wen, N.; Zeng, F.; Dai, K.; Li, T.; Zhang, X.; Pirasteh, S.; Liu, C.; Xu, Q. Evaluating and Analyzing the Potential of the Gaofen-3 SAR Satellite for Landslide Monitoring. Remote Sens. 2022, 14, 4425. [Google Scholar] [CrossRef]
- Wang, G.; Xie, M.; Chai, X.; Wang, L.; Dong, C. D-InSAR-Based Landslide Location and Monitoring at Wudongde Hydropower Reservoir in China. Environ. Earth Sci. 2013, 69, 2763–2777. [Google Scholar] [CrossRef]
- Vajedian, S.; Motagh, M.; Nilfouroushan, F. Application of ALOS and Envisat Data in Improving Multi-Temporal InSAR Methods for Monitoring Damavand Volcano and Landslide Deformation in the Center of Alborz Mountains, North Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1-W3, 447–451. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.-P. Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Ge, X.; Tong, L. A Spatio-Temporal Monitoring Method Based on Multi-Source Remote Sensing Data Applied to the Case of the Temi Landslide. Land 2022, 11, 1367. [Google Scholar] [CrossRef]
- Medhat, N.I.; Yamamoto, M.; Tolomei, C.; Harbi, A.; Maouche, S. Multi-Temporal InSAR Analysis to Monitor Landslides Using the Small Baseline Subset (SBAS) Approach in the Mila Basin, Algeria. Terra Nova 2022, 34, 407–423. [Google Scholar] [CrossRef]
- Gou, Y.; Zhang, L.; Chen, Y.; Zhou, H.; Zhu, Q.; Liu, X.; Lin, J. Monitoring Seasonal Movement Characteristics of the Landslide Based on Time-Series InSAR Technology: The Cheyiping Landslide Case Study, China. Remote Sens. 2022, 15, 51. [Google Scholar] [CrossRef]
- Xu, Y.; George, D.L.; Kim, J.; Lu, Z.; Riley, M.; Griffin, T.; De La Fuente, J. Landslide Monitoring and Runout Hazard Assessment by Integrating Multi-Source Remote Sensing and Numerical Models: An Application to the Gold Basin Landslide Complex, Northern Washington. Landslides 2021, 18, 1131–1141. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Xu, Y.; Kim, J.; Gallegos, A.J. InSAR Monitoring of Creeping Landslides in Mountainous Regions: A Case Study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
- Hussain, S.; Hongxing, S.; Ali, M.; Ali, M. PS-InSAR Based Validated Landslide Susceptibility Modelling: A Case Study of Ghizer Valley, Northern Pakistan. Geocarto Int. 2022, 37, 3941–3962. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Q.; Lu, Z. Landslide Displacement Monitoring by Time Series InSAR Combining PS and DS Targets. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1011–1014. [Google Scholar]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-Based Detection Method for Mapping and Monitoring Slow-Moving Landslides in Remote Regions with Steep and Mountainous Terrain: An Application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Amitrano, D.; Guida, R.; Dell’Aglio, D.; Di Martino, G.; Di Martire, D.; Iodice, A.; Costantini, M.; Malvarosa, F.; Minati, F. Long-Term Satellite Monitoring of the Slumgullion Landslide Using Space-Borne Synthetic Aperture Radar Sub-Pixel Offset Tracking. Remote Sens. 2019, 11, 369. [Google Scholar] [CrossRef]
- Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef]
- Armaș, I.; Gheorghe, M.; Silvaș, G.C. Shallow Landslides Physically Based Susceptibility Assessment Improvement Using InSAR. Case Study: Carpathian and Subcarpathian Prahova Valley, Romania. Remote Sens. 2021, 13, 2385. [Google Scholar] [CrossRef]
- Mirzaee, S.; Motagh, M.; Akbari, B. Landslide monitoring using insar time-series and GPS observations, case study: Shabkola landslide in northern Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 487–492. [Google Scholar] [CrossRef]
- Spinetti, C.; Bisson, M.; Tolomei, C.; Colini, L.; Galvani, A.; Moro, M.; Saroli, M.; Sepe, V. Landslide Susceptibility Mapping by Remote Sensing and Geomorphological Data: Case Studies on the Sorrentina Peninsula (Southern Italy). GIScience Remote Sens. 2019, 56, 940–965. [Google Scholar] [CrossRef]
Classification | Factors/Subcategory | Factors’ Count |
---|---|---|
Topographic Factors | Slope, slope shape, slope length, slope aspect, relative slope position, slope height, elevation (or altitude), elevation coefficient of variation (EVC), surface cutting depth (SCD), topographic roughness index (TRI), landform, curvature, plane curvature, profile curvature, cross-sectional curvature, longitudinal curvature, land relief (LR), convergence index, topographical position index (TPI), channel network base, valley depth, distance to ridge, and distance to nearest hill. | 23 |
Geological and Geomorphological Factors | Geomorphology map, lithology (geology), rock mass strength, geological folds, dip slopes, bed rock-slope relationship, gravity anomaly (Ga) factor, peak ground acceleration (PGA) *, seismic intensity *, epicentral distance *, distance to lineament, lineament density, fault density, and distance to fault. | 14 |
Hydrological Factors | Specific catchment area (SCA), topographic wetness index (TWI), gully density, drainage density, distance to drainage, river/stream density, distance to river/stream, distance to catchment, catchment slope, normalized difference water index (NDWI), rainfall (precipitation) *, total surface radiation, soil moisture, hydrologic soil group, flow path length (FPL), stream transport index (STI), stream power index (SPI), and compound topographic index (CTI) | 18 |
Human Factors | Road density, distance to road, distance to settlement/built-up, settlement density, population density, distance to mine, land use and land cover (LULC), land use change (LUC), and normalized difference built-up index (NDBI). | 9 |
Vegetation Factors | Normalized difference vegetation index (NDVI), tree cover, vegetation index, and fraction vegetation cover (FVC). | 4 |
Soil Factors | Soil type, soil depth, texture, erosion, percent sand, percent silt, percent clay, saturated hydraulic conductivity, available water capacity, one third bar water content, plasticity index, and liquid limit. | 12 |
Others | Deformation velocity, band factor, physically based stability coefficient, and temperature. | 4 |
Article | Before Optimization | After Optimization |
---|---|---|
[127] | AUC value: 0.8561 (LR), 0.7545 (FR) | not given |
[128] | AUC value: 0.916 (FR-RF), 0.897 (RF), 0.866 (FR) | not given |
[129] | AUC value: 0.981 | not given |
[130] | Accuracy: 0.972 (XGBoost), 0.961 (RF), 0.890 (NB), 0.884 (ANN), 0.861 (KNN) | not given |
[131] | R-index: 91.03% | R-index: 97.09% |
[132] | AUC value: 0.821 | AUC value: 0.869 |
[133] | AUC value: 0.84 (LR), 0.91 (SVM) | 66,094 classification error cells (59.48 km2) were corrected. |
[134] | not given | not given |
[135] | AUC value: 0.980 | AUC value: 0.973 |
[140] | AUC value: 0.88 | AUC value: 0.90 |
[141] | not given | R-index: 79.2323% |
[142] | AUC value: 0.7288 (XGBoost), 0.6928 (RF) | not given |
Article | Number of Evaluation Factors | Ranking of Deformation Velocity Importance | Percentile Rank of Deformation Velocity | Type of Study Area |
---|---|---|---|---|
[27] | 13 | not given | - | hybrid area |
[29] | 17 | 8 | 47.1% | riverbank |
[47] | 11 | 4 | 36.4% | hybrid area |
[135] | 12 | 3 | 25.0% | riverbank |
[138] | 14 | 3 | 21.4% | hybrid area |
[143] | 36 | not given | - | mountainous area |
[144] | 15 | not given | - | hybrid area |
[145] | 14 | 13 (in study area 1) 9 (in study area 2) | 92.9% 64.3% | riverbank, mountainous area |
[146] | 7 | not given | - | riverbank |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Pang, H.; Li, Y.; Fan, L.; Wei, S.; Yuan, Z.; Fang, Y. Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review. Remote Sens. 2025, 17, 999. https://doi.org/10.3390/rs17060999
Cheng Y, Pang H, Li Y, Fan L, Wei S, Yuan Z, Fang Y. Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review. Remote Sensing. 2025; 17(6):999. https://doi.org/10.3390/rs17060999
Chicago/Turabian StyleCheng, Yusen, Hongli Pang, Yangyang Li, Lei Fan, Shengjie Wei, Ziwen Yuan, and Yinqing Fang. 2025. "Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review" Remote Sensing 17, no. 6: 999. https://doi.org/10.3390/rs17060999
APA StyleCheng, Y., Pang, H., Li, Y., Fan, L., Wei, S., Yuan, Z., & Fang, Y. (2025). Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review. Remote Sensing, 17(6), 999. https://doi.org/10.3390/rs17060999