Multi-Aspect Interpolation Method for SAR Complex Images of Typical Aircraft Target Using Multi-Aspect Scattering Information Complex Generative Adversarial Network
Abstract
:1. Introduction
- We propose an intelligent method for SAR complex image multi-aspect interpolation, MS-CGAN, to generate SAR complex images with unquantized amplitude, no missing phase, and required aspects, thereby trying to solve the problems of SAR amplitude image quantization and SAR phase image missing in current intelligent multi-aspect interpolation methods.
- We construct a Pseudo-Scattering Information Sequence (PSIS) as the MS-CGAN input which differs from the random noise input typical of general GANs; instead, it consists of the PSIS formed by interpolating random noise into prior scattering information, where the prior scattering information is generated through the integration of complex center sequences containing anisotropic scattering information. Essentially, while the noise information remains random, the input sequence contains scattering information observed from multiple aspects. Theoretically, it can facilitate the convergence of the scattering distribution in interpolated SAR images towards the target scattering distribution.
- We propose a custom-defined SAR phase image quality assessment parameter: the phase correlation. The phase coherence coefficient in interferometric SAR is used to verify the effectiveness of the phase correlation.
2. Dataset Description and Data Preprocessing
2.1. Dataset Description
2.2. Data Preprocessing
3. Methodology and Parameter Analysis
3.1. Scattering Analysis of Multi-Aspect SAR Amplitude Images
3.2. MS-CGAN Model
3.2.1. Modeling of the PSIS
3.2.2. Generator Model
3.2.3. Discriminator Model
3.2.4. Feedback Model
3.3. Assessment Parameters
3.3.1. Quality Assessment of Interpolated SAR Amplitude Images
3.3.2. Quality Assessment of Interpolated SAR Phase Images
4. Experiment and Results
4.1. Experiment and Analysis of the Effectiveness of MS-CGAN
4.1.1. Experimental Design
- The linear vector interpolation method [20] is commonly used in engineering and is practical and simple, making it the most widely used traditional multi-aspect interpolation method.
- The DCGAN interpolation method [22] represents traditional GAN intelligent multi-aspect interpolation methods. Although it is an early GAN model, it still plays a significant role in the ongoing updates and iterations of various intelligent multi-aspect interpolation methods.
- The SAGAN interpolation method [26] is part of a new trend of multi-aspect interpolation methods, known for its novelty.
4.1.2. Analysis of Experimental Results
Analysis of Results Based on Assessment Parameters
Complement of Aspects of the Target Energy Integral Curve
4.2. Ablation Study on the PSIS
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.L.; Chiang, C.Y.; Chen, K. SAR image simulation with application to target recognition. Prog. Electromagn. Res. 2011, 119, 35–57. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montrea, QC, Canada, 8–13 December 2014; Volume 2, pp. 2672–2680. [Google Scholar] [CrossRef]
- Wei, S.; Han, B.; Li, Y.; Hong, W.; Wan, J. Anisotropic Scattering Analysis of Typical Aircraft Target Structural Complexity in Multi-aspect SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5226617. [Google Scholar] [CrossRef]
- Wei, S.; Han, B.; Teng, F.; Sun, W.; Yang, J.; Hong, W. Analysis of SAR texture feature of anisotropic entropy based on Radon transform. In Proceedings of the CNSRP 2023—2023 Chinese National Symposium on Radio Propagation, Qingdao, China, 24–27 September 2023; pp. 575–578. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Zhang, C.; Feng, B.; Gao, Y.; Yang, H. Review of SAR Image Simulation Methods. Comput. Eng. Appl. 2021, 57, 62–72. [Google Scholar] [CrossRef]
- Niu, S.; Qiu, X.; Lei, B.; Ding, C.; Fu, K. Parameter extraction based on deep neural network for SAR target simulation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4901–4914. [Google Scholar] [CrossRef]
- Asvestas, J.S. The physical optics method in electromagnetic scattering. J. Math. Phys. 1980, 21, 290–299. [Google Scholar] [CrossRef]
- Franceschetti, G.; Iodice, A.; Riccio, D.; Ruello, G. SAR raw signal simulation for urban structures. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1986–1995. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, L.; Lu, J.; Xing, X.; Li, S.; Yin, H. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism. J. Radars 2021, 10, 370–381. [Google Scholar] [CrossRef]
- Munro, P.R.; Ignatyev, K.; Speller, R.D.; Olivo, A. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems. Opt. Express 2010, 18, 4103–4117. [Google Scholar] [CrossRef]
- Bhalla, R.; Ling, H.; Lee, S.W.; Hughes, J.A. Bistatic scattering center extraction using the shooting and bouncing ray technique. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, FL, USA, 5–9 April 1999; Volume 3721, pp. 612–619. [Google Scholar] [CrossRef]
- Chew, W.C.; Jin, J.M.; Lu, C.C.; Michielssen, E.; Song, J.M. Fast solution methods in electromagnetics. IEEE Trans. Antennas Propag. 1997, 45, 533–543. [Google Scholar] [CrossRef]
- Zou, B.; Zhang, L.; Kou, L.; Wei, T. Characteristic Analysis and Simulation of SAR Moving Targets. Radar Sci. Technol. 2008, 6, 116–122. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef]
- Harrington, R.F. The Method of Moments Applied to Aperture Problems. IEICE Proc. Ser. 1992, 7, 301–311. [Google Scholar] [CrossRef]
- Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 1985, 60, 187–207. [Google Scholar] [CrossRef]
- Song, J.; Lu, C.; Chew, W.; Lee, S. Fast Illinois solver code (FISC). IEEE Antennas Propag. Mag. 1998, 40, 27–34. [Google Scholar] [CrossRef]
- Weijie, X.; Jianjiang, Z. A raw signal simulator for bistatic SAR. Chin. J. Aeronaut. 2009, 22, 434–443. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Vu, V.T.; Batra, A.; Kaiser, T.; Pettersson, M.I. Interpolation methods with phase control for backprojection of complex-valued SAR data. Sensors 2022, 22, 4941. [Google Scholar] [CrossRef]
- Guo, J.; Lei, B.; Ding, C.; Zhang, Y. Synthetic aperture radar image synthesis by using generative adversarial nets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1111–1115. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Z.; Wang, X.; Cao, Z. Data augmentation method of SAR image dataset. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5292–5295. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, M.; Cao, Z.; Cao, C. Image data augmentation for SAR sensor via generative adversarial nets. IEEE Access 2019, 7, 42255–42268. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, X. Simulation method of target SAR image based on spectral normalization generative adversarial network. Comput. Mod. 2020, 2020, 14–20. [Google Scholar] [CrossRef]
- Du, S.; Hong, J.; Wang, Y.; Qi, Y. A high-quality multicategory SAR images generation method with multiconstraint GAN for ATR. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4011005. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Han, B.; Zhang, Y.; Guo, J.; Hong, W.; Sun, W.; Hu, W. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation. J. Radars 2022, 11, 637–651. [Google Scholar] [CrossRef]
- Gong, M.; Niu, X.; Zhang, P.; Li, Z. Generative adversarial networks for change detection in multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2310–2314. [Google Scholar] [CrossRef]
- Ao, D.; Dumitru, C.O.; Schwarz, G.; Datcu, M. Dialectical GAN for SAR image translation: From Sentinel-1 to TerraSAR-X. Remote Sens. 2018, 10, 1597. [Google Scholar] [CrossRef]
- Hughes, L.H.; Schmitt, M.; Zhu, X.X. Mining hard negative samples for SAR-optical image matching using generative adversarial networks. Remote Sens. 2018, 10, 1552. [Google Scholar] [CrossRef]
- Merkle, N.; Auer, S.; Müller, R.; Reinartz, P. Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1811–1820. [Google Scholar] [CrossRef]
- Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A conditional adversarial network for change detection in heterogeneous images. IEEE Geosci. Remote Sens. Lett. 2018, 16, 45–49. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, J.; Zhou, J. Remote sensing image translation using spatial-frequency consistency GAN. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Ding, Z.; Wang, Y.; Zeng, T.; Long, T. SAR parametric super-resolution image reconstruction methods based on ADMM and deep neural network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10197–10212. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Du, W.; Wei, M.; Li, L. Super-resolution SAR Image Reconstruction via Generative Adversarial Network. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, F.; Yang, S.; Zhang, Z.; Su, T. Automatic target recognition for synthetic aperture radar images based on super-resolution generative adversarial network and deep convolutional neural network. Remote Sens. 2019, 11, 135. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, X.; Zhang, Y.; Liu, X.; Yuan, B.; Li, Z. Self-normalizing generative adversarial network for super-resolution reconstruction of SAR images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1911–1914. [Google Scholar] [CrossRef]
- Pu, W. Deep SAR imaging and motion compensation. IEEE Trans. Image Process. 2021, 30, 2232–2247. [Google Scholar] [CrossRef]
- Asiyabi, R.M.; Datcu, M.; Nies, H.; Anghel, A. Complex-valued vs. real-valued convolutional neural network for polsar data classification. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–2 July 2022; pp. 421–424. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Yu, L.; Hu, Y.; Xie, X.; Lin, Y.; Hong, W. Complex-valued full convolutional neural network for SAR target classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1752–1756. [Google Scholar] [CrossRef]
- Hua, Q.; Zhang, Y.; Wei, C.; Ji, Z. CV-RotNet: Complex-Valued Convolutional Neural Network for SAR three-dimensional rotating ship target recognition. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3552–3555. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Chen, P.; Wang, J. Complex number domain SAR image fusion based on Laplacian pyramid. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 306–309. [Google Scholar] [CrossRef]
- Huang, Z.; Datcu, M.; Pan, Z.; Lei, B. Deep SAR-Net: Learning objects from signals. ISPRS J. Photogramm. Remote Sens. 2020, 161, 179–193. [Google Scholar] [CrossRef]
- Feng, S.; Lin, Y.; Wang, Y.; Yang, Y.; Shen, W.; Teng, F.; Hong, W. DEM Generation With a Scale Factor Using Multi-Aspect SAR Imagery Applying Radargrammetry. Remote Sens. 2020, 12, 556. [Google Scholar] [CrossRef]
- Ponce, O.; Prats, P.; Rodriguez-Cassola, M.; Scheiber, R.; Reigber, A. Processing of Circular SAR trajectories with Fast Factorized Back-Projection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3692–3695. [Google Scholar] [CrossRef]
- Ulander, L.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Baek, W.K.; Jung, H.S. Phase unwrapping of SAR interferogram from modified U-net via training data simulation and network structure optimization. Remote Sens. Environ. 2024, 314, 114392. [Google Scholar] [CrossRef]
- Teng, F.; Hong, W.; Lin, Y. Aspect entropy extraction using circular SAR data and scattering anisotropy analysis. Sensors 2019, 19, 346. [Google Scholar] [CrossRef]
- Teng, F.; Lin, Y.; Feng, S.; Hong, W. A Man-Made Target Detection Method Based on Multi-Angular Phase Characteristic. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5024–5027. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Sheng, J.; Xing, M. Extraction method for anisotropy characteristic of scattering center in wide-angle SAR imagery. J. Electron. Inf. Technol. 2016, 38, 1956–1961. [Google Scholar] [CrossRef]
- Pérez-Cruz, F. Kullback-Leibler divergence estimation of continuous distributions. In Proceedings of the 2008 IEEE international symposium on information theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1666–1670. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Prati, C. SAR interferometry: A “quick and dirty” coherence estimator for data browsing. IEEE Trans. Geosci. Remote Sens. 1997, 35, 660–669. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Radar system | FMCW |
Carrier frequency | 14.9 GHz |
Bandwidth | 1.2 GHz |
Polarization mode | Full-polarization |
Azimuth beamwidth | 3° |
Range beamwidth | 20° |
Flight height | 150 m |
Experiment Number | Dataset | Interpolated SAR Images | |
---|---|---|---|
Experiment ONE | Linear vector interpolation [20] | SAR images of targets from 36 different aspects: 0°, 10°, 20°, …, 340°, 350° | Interpolated SAR images of targets from 36 different aspects: 5°, 15°, 25°, …, 345°, 355° |
DCGAN [22] | |||
SAGAN [26] | |||
MS-CGAN (Ours) | |||
Experiment TWO | Linear vector interpolation [20] | SAR images of targets from 18 different aspects: 0°, 20°, 40°, …, 320°, 340° | Interpolated SAR images of targets from 18 different aspects: 10°, 30°, 50°, …, 330°, 350° |
DCGAN [22] | |||
SAGAN [26] | |||
MS-CGAN (Ours) | |||
Experiment THREE | Linear vector interpolation [20] | SAR images of targets from 12 different aspects: 0°, 30°, 60°, …, 300°, 330° | Interpolated SAR images of targets from 12 different aspects: 15°, 45°, 75°, …, 315°, 345° |
DCGAN [22] | |||
SAGAN [26] | |||
MS-CGAN (Ours) |
Assessment Parameters | Real | Linear Vector Interpolation | DCGAN | SAGAN | MS-CGAN (Ours) | |
---|---|---|---|---|---|---|
Experiment ONE | Complex Images | |||||
1.0000 | 0.6522 | 0.7235 | 0.7577 | 0.8099 | ||
MSE (10−1) | 0.0000 | 0.3997 | 0.3090 | 0.2665 | 0.1056 | |
1.0000 | 0.7523 | 0.7264 | 0.7541 | 0.8129 | ||
1.0000 | 0.7125 | 0.6904 | 0.7221 | 0.7878 | ||
Experiment TWO | Complex Images | |||||
1.0000 | 0.6019 | 0.6805 | 0.7115 | 0.7732 | ||
MSE (10−1) | 0.0000 | 0.7963 | 0.4146 | 0.3680 | 0.1752 | |
1.0000 | 0.6222 | 0.6913 | 0.7227 | 0.7853 | ||
1.0000 | 0.6013 | 0.6729 | 0.7005 | 0.7677 | ||
Experiment THREE | Complex Images | |||||
1.0000 | 0.5772 | 0.6358 | 0.6865 | 0.7319 | ||
MSE (10−1) | 0.0000 | 2.8347 | 0.5539 | 0.4697 | 0.2093 | |
1.0000 | 0.5125 | 0.6269 | 0.6610 | 0.7108 | ||
1.0000 | 0.4943 | 0.6097 | 0.6434 | 0.6862 |
Assessment Parameters | Real | Linear Vector Interpolation | DCGAN | SAGAN | MS-CGAN (Ours) | |
---|---|---|---|---|---|---|
Experiment ONE | Complex Images | |||||
1.0000 | 0.6028 | 0.6753 | 0.7529 | 0.8061 | ||
MSE (10−1) | 0.0000 | 0.4213 | 0.3475 | 0.2739 | 0.1377 | |
1.0000 | 0.6719 | 0.6734 | 0.7218 | 0.8019 | ||
1.0000 | 0.6602 | 0.6573 | 0.7010 | 0.7796 | ||
Experiment TWO | Complex Images | |||||
1.0000 | 0.5738 | 0.6454 | 0.7036 | 0.7543 | ||
MSE (10−1) | 0.0000 | 0.7410 | 0.4545 | 0.3899 | 0.1794 | |
1.0000 | 0.5858 | 0.6541 | 0.6758 | 0.7777 | ||
1.0000 | 0.5499 | 0.6413 | 0.6527 | 0.7507 | ||
Experiment THREE | Complex Images | |||||
1.0000 | 0.5264 | 0.6140 | 0.6777 | 0.7270 | ||
MSE (10−1) | 0.0000 | 2.5912 | 0.7029 | 0.6927 | 0.2233 | |
1.0000 | 0.4964 | 0.5801 | 0.6271 | 0.7130 | ||
1.0000 | 0.4716 | 0.5599 | 0.6013 | 0.6976 |
Assessment Parameters | Real | MS-CGAN With PSIS | MS-CGAN Without PSIS | |
---|---|---|---|---|
Experiment ONE | Complex Images | |||
1.0000 | 0.8099 | 0.7309 | ||
MSE (10−1) | 0.0000 | 0.1056 | 0.1593 | |
Experiment TWO | Complex Images | |||
1.0000 | 0.7732 | 0.7166 | ||
MSE (10−1) | 0.0000 | 0.1752 | 0.2371 | |
Experiment THREE | Complex Images | |||
1.0000 | 0.7319 | 0.6403 | ||
MSE (10−1) | 0.0000 | 0.2093 | 0.3085 |
Assessment Parameters | Real | MS-CGAN With PSIS | MS-CGAN Without PSIS | |
---|---|---|---|---|
Experiment ONE | Complex Images | |||
1.0000 | 0.8061 | 0.7406 | ||
MSE (10−1) | 0.0000 | 0.1377 | 0.1787 | |
Experiment TWO | Complex Images | |||
1.0000 | 0.7543 | 0.6966 | ||
MSE (10−1) | 0.0000 | 0.1794 | 0.2403 | |
Experiment THREE | Complex Images | |||
1.0000 | 0.7270 | 0.6410 | ||
MSE (10−1) | 0.0000 | 0.2233 | 0.3482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Han, B.; Shen, J.; Wan, J.; Feng, Y.; Xue, Q. Multi-Aspect Interpolation Method for SAR Complex Images of Typical Aircraft Target Using Multi-Aspect Scattering Information Complex Generative Adversarial Network. Remote Sens. 2025, 17, 1143. https://doi.org/10.3390/rs17071143
Wei S, Han B, Shen J, Wan J, Feng Y, Xue Q. Multi-Aspect Interpolation Method for SAR Complex Images of Typical Aircraft Target Using Multi-Aspect Scattering Information Complex Generative Adversarial Network. Remote Sensing. 2025; 17(7):1143. https://doi.org/10.3390/rs17071143
Chicago/Turabian StyleWei, Shixin, Bing Han, Jiayuan Shen, Jiaxin Wan, Yugang Feng, and Qianyue Xue. 2025. "Multi-Aspect Interpolation Method for SAR Complex Images of Typical Aircraft Target Using Multi-Aspect Scattering Information Complex Generative Adversarial Network" Remote Sensing 17, no. 7: 1143. https://doi.org/10.3390/rs17071143
APA StyleWei, S., Han, B., Shen, J., Wan, J., Feng, Y., & Xue, Q. (2025). Multi-Aspect Interpolation Method for SAR Complex Images of Typical Aircraft Target Using Multi-Aspect Scattering Information Complex Generative Adversarial Network. Remote Sensing, 17(7), 1143. https://doi.org/10.3390/rs17071143