A Review of 2D Lidar SLAM Research
Abstract
:1. Introduction
2. Research on 2D Lidar SLAM
2.1. Filter-Based SLAM
2.2. Scan Matching-Based SLAM
2.3. Graph Optimization-Based SLAM
2.4. Deep Learning-Based SLAM
3. Research Hotspot of 2D Lidar SLAM
3.1. D Lidar SLAM in Dynamic Environment
3.2. Research on Laser and Vision Fusion SLAM
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Xiao, X.; Stone, P. A Lifelong Learning Approach to Mobile Robot Navigation. IEEE Robot. Autom. Lett. 2021, 6, 1090–1096. [Google Scholar] [CrossRef]
- De Heuvel, J.; Zeng, X.; Shi, W.; Sethuraman, T.; Bennewitz, M. Spatiotemporal Attention Enhances Lidar-Based Robot Navigation in Dynamic Environments. IEEE Robot. Autom. Lett. 2024, 9, 4202–4209. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. Remote Sens. 2022, 14, 2835. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. Robot. Sci. Syst. 2014, 2, 9. [Google Scholar]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24–30 October 2020; pp. 5135–5142. [Google Scholar]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Jiang, G.; Yin, L.; Jin, S.; Tian, C.; Ma, X.; Ou, Y. A Simultaneous Localization and Mapping (SLAM) Framework for 2.5D Map Building Based on Low-Cost LiDAR and Vision Fusion. Appl. Sci. 2019, 9, 2105. [Google Scholar] [CrossRef]
- Sebastian, T. Probabilistic robotics. Commun. ACM 2005, 45, 52–57. [Google Scholar]
- Connette, C.P.; Meister, O.; Hagele, M.; Trommer, G.F. Decomposition of line segments into corner and statistical grown line features in an EKF-SLAM framework. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, USA, 29 October–2 November 2007; pp. 3884–3891. [Google Scholar]
- Man, Z.; Ye, W.; Xiao, H.; Qian, X. Method for corner feature extraction from laser scan data. J. Nanjing Univ. Aeronaut. Astronaut. 2012, 44, 379–383. [Google Scholar]
- Man, Z. Research on Mapping and Localization of indoor AGV Based on LADAR. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2016. [Google Scholar]
- Liu, P.; Ren, G.; He, Z. Method for Extracting Corner Feature from 2D Laser SLAM. J. Nanjing Univ. Aeronaut. Astronaut. 2021, 53, 366–372. [Google Scholar]
- Yu, W.; Zamora, E.; Soria, A. Ellipsoid SLAM: A novel set membership method for simultaneous localization and mapping. Auton. Robot. 2016, 40, 125–137. [Google Scholar] [CrossRef]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the AAAI National Conference on Artificial Intelligence (AAAI), Edmonton, AB, Canada, 28 July–1 August 2002; pp. 593–598. [Google Scholar]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. Proc. Eighth Int. Jt. Conf. Artif. Intell. 2003, 133, 1151–1156. [Google Scholar]
- Turnage, D.M. Simulation results for localization and mapping algorithms. In Proceedings of the IEEE 2016 Winter Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016; pp. 3040–3051. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar]
- Blanco, J.L.; Gonzalez, J.; Fernandez-Madrigal, J.A. Optimal Filtering for Non-parametric Observation Models: Applications to Localization and SLAM. Int. J. Robot. Res. 2010, 29, 1726–1742. [Google Scholar] [CrossRef]
- Tian, C.; Liu, H.; Liu, Z.; Li, H.; Wang, Y. Research on Multi-Sensor Fusion SLAM Algorithm Based on Improved Gmapping. IEEE Access 2023, 11, 13690–13703. [Google Scholar]
- Olson, E.B. Real-time correlative scan matching. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 4387–4393. [Google Scholar]
- Kohlbrecher, S.; Stryk, O.V.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Kyoto, Japan, 1–5 November 2011; pp. 155–160. [Google Scholar]
- Wei, X.; Yang, C.; Kong, L.; Sun, P. Improved Hector-SLAM Algorithm Based on Data Fusion of LiDAR and IMU for a Wheeled Robot Working in Machining Workshop. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 2126–2131. [Google Scholar]
- Krinkin, K.; Filatov, A. Correlation filter of 2D laser scans for indoor environment. Robot. Auton. Syst. 2021, 142, 103809. [Google Scholar] [CrossRef]
- Bao, M.; Wang, K.; Li, R.; Ma, B.; Fan, Z. RIA-CSM: A Real-Time Impact-Aware Correlative Scan Matching Using Heterogeneous Multi-Core SoC. IEEE Sens. J. 2022, 22, 5787–5796. [Google Scholar] [CrossRef]
- Mohamed, H.; Moussa, A.; Elhabiby, M.; El-Sheimy, N.; Sesay, A. A Novel Real-Time Reference Key Frame Scan Matching Method. Sensors 2017, 17, 1060. [Google Scholar] [CrossRef]
- Cho, H.; Kim, E.K.; Kim, S. Indoor SLAM application using geometric and ICP matching methods based on line features. Robot. Auton. Syst. 2018, 100, 206–224. [Google Scholar] [CrossRef]
- Prieto-Fernández, N.; Fernández-Blanco, S.; Fernández-Blanco, Á.; Benítez-Andrades, J.A.; Carro-De-Lorenzo, F.; Benavides, C. Weighted Conformal LiDAR-Mapping for Structured SLAM. IEEE Trans. Instrum. Meas. 2023, 72, 8504110. [Google Scholar] [CrossRef]
- Jiang, G.; Yin, L.; Liu, G.; Xi, W.; Ou, Y. FFT-Based Scan-Matching for SLAM Applications with Low-Cost Laser Range Finders. Appl. Sci. 2018, 9, 41. [Google Scholar] [CrossRef]
- Bouraine, S.; Bougouffa, A.; Azouaoui, O. Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform. Evol. Intell. 2022, 15, 683–694. [Google Scholar] [CrossRef]
- Bouraine, S.; Bougouffa, A.; Azouaoui, O. NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–14 December 2020; pp. 321–326. [Google Scholar]
- Lu, F.; Milios, E. Globally consistent range scan alignment for environment mapping. Auton. Robot. 1997, 4, 333–349. [Google Scholar]
- Howard, A.; Mataric, M.; Sukhatme, G. Relaxation on a mesh: A formalism for generalized localization. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, HI, USA, 29 October–3 November 2001; pp. 1055–1060. [Google Scholar]
- Olson, E.; Leonard, J.; Teller, S. Fast iterative alignment of pose graphs with poor initial estimates. In Proceedings of the International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2262–2269. [Google Scholar]
- Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient Sparse Pose Adjustment for 2D mapping. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010; pp. 22–29. [Google Scholar]
- Luca, C. A Linear Approximation for Graph-based Simultaneous Localization and Mapping. In Robotics: Science and Systems VII; The MIT Press: Cambridge, MA, USA, 2012; pp. 41–48. [Google Scholar]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar]
- Huang, H.; Zhu, W. A Loop Closure Matching Method Based on Simulated Annealing Algorithm in 2D Lidar SLAM. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 732–736. [Google Scholar]
- Li, X.; Zhong, X.; Peng, X.; Gong, Z.; Zhong, X. Fast ICP-SLAM Method Based on Multi-resolution Search and Multi-density Point Cloud Matching. Robot 2020, 42, 583–594. [Google Scholar]
- Geer, I.; Vallve, J.; Sola, J. IMU preintegration for 2D SLAM problems using Lie Groups. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 1367–1373. [Google Scholar]
- Liu, R.; He, Y.; Yuen, C.; Lau, B.P.L.; Ali, R.; Fu, W.; Cao, Z. Cost-effective Mapping of Mobile Robot Based on the Fusion of UWB and Short-range 2-D LiDAR. IEEE/ASME Trans. Mechatron. 2022, 27, 1321–1331. [Google Scholar]
- Li, B.; Wang, Y.; Zhang, Y.; Zhao, W.; Ruan, J.; Li, P. GP-SLAM: Laser-based SLAM approach based on regionalized Gaussian process map reconstruction. Auton. Robot. 2020, 44, 947–967. [Google Scholar]
- Li, B. GP-SLAM: Novel Laser-Based Simultaneous Localization and Mapping Method. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- De la Puente, P.; Rodriguez-Losada, D. Feature based graph-SLAM in structured environments. Auton. Robot. 2014, 37, 243–260. [Google Scholar] [CrossRef]
- De la Puente, P.; Rodriguez-Losada, D. Feature based graph SLAM with high level representation using rectangles. Robot. Auton. Syst. 2015, 63, 80–88. [Google Scholar] [CrossRef]
- Chen, L.; Peng, C. A Robust 2D-SLAM Technology with Environmental Variation Adaptability. IEEE Sens. J. 2019, 19, 11475–11491. [Google Scholar]
- Zhao, J.; Zhao, L.; Huang, S.; Wang, Y. 2D Laser SLAM with General Features Represented by Implicit Functions. IEEE Robot. Autom. Lett. 2020, 5, 4329–4336. [Google Scholar]
- Zhao, J.; Li, T.; Yang, T.; Zhao, L.; Huang, S. 2D Laser SLAM With Closed Shape Features: Fourier Series Parameterization and Submap Joining. IEEE Robot. Autom. Lett. 2021, 6, 1527–1534. [Google Scholar]
- Jia, S.; Liu, C.; Wu, H.; Zeng, D.; Ai, M. A cross-correction LiDAR SLAM method for high-accuracy 2D mapping of problematic scenario. ISPRS J. Photogramm. Remote Sens. 2021, 171, 367–384. [Google Scholar]
- Zhang, H.; Chen, N.; Dai, Z.; Fan, G. A SLAM Localization Algorithm Based on Multi-level Data Fusion. Robot 2021, 43, 641–652. [Google Scholar]
- Zhou, H.; Hu, Z.; Liu, S.; Khan, S. Efficient 2D Graph SLAM for Sparse Sensing. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 6404–6411. [Google Scholar]
- Granstrom, K.; Callmer, J.; Ramos, F.; Nieto, J. Learning to detect loop closure from range data. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 15–22. [Google Scholar]
- Li, J.; Zhan, H.; Chen, B.M.; Reid, I.; Lee, G.H. Deep learning for 2D scan matching and loop closure. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 763–768. [Google Scholar]
- Spampinato, G.; Bruna, A.; Guarneri, I.; Giacalone, D. Deep Learning Localization with 2D Range Scanner. In Proceedings of the 2021 7th International Conference on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4–6 February 2021; pp. 206–210. [Google Scholar]
- Valente, M.; Joly, C.; De La Fortelle, A. An LSTM Network for Real-Time Odometry Estimation. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1434–1440. [Google Scholar]
- Valente, M.; Joly, C.; De La Fortelle, A. Deep Sensor Fusion for Real-Time Odometry Estimation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, China, 4–8 November 2019; pp. 6679–6685. [Google Scholar]
- Li, C.; Wang, S.; Zhuang, Y.; Yan, F. Deep Sensor Fusion Between 2D Laser Scanner and IMU for Mobile Robot Localization. IEEE Sens. J. 2021, 21, 8501–8509. [Google Scholar]
- Nashed, S.B. Laser2Vec: Similarity-based Retrieval for Robotic Perception Data. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24–30 October 2020; pp. 10657–10662. [Google Scholar]
- Jeong, H.; Lee, H. CNN-Based Fault Detection of Scan Matching for Accurate SLAM in Dynamic Environments. Sensors 2023, 23, 2940. [Google Scholar] [CrossRef]
- Huang, S.; Huang, H.Z.; Zeng, Q. A Robot Localization Method in Indoor Dynamic Environment. J. Univ. Electron. Sci. Technol. China 2021, 50, 382–390. [Google Scholar]
- Boniardi, F.; Caselitz, T.; Kümmerle, R.; Burgard, W. A pose graph-based localization system for long-term navigation in CAD floor plans. Robot. Auton. Syst. 2019, 112, 84–97. [Google Scholar] [CrossRef]
- Lazaro, M.T.; Capobianco, R.; Grisetti, G. Efficient Long-term Mapping in Dynamic Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 153–160. [Google Scholar]
- Ye, H.; Chen, G.; Chen, W.; He, L.; Guan, Y.; Zhang, H. Mapping While Following: 2D LiDAR SLAM in Indoor Dynamic Environments with a Person Tracker. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 26–31 December 2021; pp. 826–832. [Google Scholar]
- Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2d laser scanners. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 726–733. [Google Scholar]
- Arras, K.O.; Mozos, O.M.; Burgard, W. Using Boosted Features for the detection of People in 2D Range Data. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, 10–14 April 2007; p. 3402. [Google Scholar]
- Konstantinova, P.; Udvarev, A.; Semerdjiev, T. A study of a target tracking algorithm using global nearest neighbor approach. In Proceedings of the International Conference on Computer Systems and Technologies (CompSysTech03), Rousse, Bulgaria, 19–20 June 2003; pp. 290–295. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. Trans. 1960, 82, 35–45. [Google Scholar]
- Sadhasivam, S.; Prakash, G.; Ranjith Kumar, G.; Nazeeya Anjum, N. Dynamic Mapping in Confined Spaces: Robotic SLAM with Human Detection and Path Planning. In Proceedings of the 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 11–13 December 2023; pp. 228–234. [Google Scholar]
- Zhao, M.; Guo, X.; Song, L.; Qin, B.; Shi, X.; Lee, G.H.; Sun, G. A General Framework for Lifelong Localization and Mapping in Changing Environment. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3305–3312. [Google Scholar]
- Stefanini, E.; Ciancolini, E.; Settimi, A.; Pallottino, L. Efficient 2D LIDAR-Based Map Updating for Long-Term Operations in Dynamic Environments. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 832–839. [Google Scholar]
- Stefanini, E.; Ciancolini, E.; Settimi, A.; Pallottino, L. Safe and Robust Map Updating for Long-Term Operations in Dynamic Environments. Sensors 2023, 23, 6066. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, J.; Zhang, M.; Yue, W. Evaluation Method of Change Degree of Dynamic Scene for Mobile Robots Based on Area Ratio and SLAM Algorithm. In Proceedings of the 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 12–14 October 2022; pp. 1372–1377. [Google Scholar]
- Narayana, M.; Kolling, A.; Nardelli, L.; Fong, P. Lifelong update of semantic maps in dynamic environments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 6164–6171. [Google Scholar]
- Kurz, G.; Holoch, M.; Biber, P. Geometry-based Graph Pruning for Lifelong SLAM. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3313–3320. [Google Scholar]
- Brazil, G.; Kumar, A.; Straub, J.; Ravi, N.; Johnson, J.; Gkioxari, G. Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 13154–13164. [Google Scholar]
- Zimmerman, N.; Sodano, M.; Marks, E.; Behley, J.; Stachniss, C. Constructing Metric-Semantic Maps Using Floor Plan Priors for Long-Term Indoor Localization. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 1366–1372. [Google Scholar]
- Debeunne, C.; Vivet, D. A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping. Sensors 2020, 20, 2068. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.C.; Lai, C.C. Multisensor Fusion-Based Concurrent Environment Mapping and Moving Object Detection for Intelligent Service Robotics. IEEE Trans. Ind. Electron. 2014, 61, 4043–4051. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, D.; Liu, C.; Xu, X.; Tan, Z. A LiDAR and camera fusion-based approach to mapping and navigation. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 4163–4168. [Google Scholar]
- Kamarudin, K.; Mamduh, S.; Yeon, A.; Visvanathan, R.; Shakaff, A.; Zakaria, A.; Kamarudin, L.; Rahim, N. Improving performance of 2D SLAM methods by complementing Kinect with laser scanner. In Proceedings of the 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, Malaysia, 18–20 October 2015; pp. 278–283. [Google Scholar]
- Li, Y.; Zhun, F.; Guijie, Z.; Wenji, L.; Chong, L.; Yupeng, W.; Honghui, X. A SLAM with simultaneous construction of 2D and 3D maps based on Rao-Blackwellized particle filter. In Proceedings of the 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; pp. 374–378. [Google Scholar]
- Feng, Z.; Kuang, L. A 2.5D SLAM Algorithm Based on the Fusion of 2D LiDAR and RGB-D Camera. In Proceedings of the 2024 3rd International Symposium on Sensor Technology and Control (ISSTC), Zhuhai, China, 25–27 October 2024; pp. 194–197. [Google Scholar] [CrossRef]
- Meng, X.; Gong, X.; Li, K.; Shi, Y.; Ma, Y. Research on 2D Laser SLAM Algorithm Fusion of Semantic Information. In Proceedings of the 2023 9th International Conference on Mechanical and Electronics Engineering (ICMEE), Xi’an, China, 17–19 November 2023; pp. 356–361. [Google Scholar]
- Xu, Y.; Ou, Y.; Xu, T. SLAM of Robot based on the Fusion of Vision and LIDAR. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 121–126. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Tan, Y.; Hu, J. SLAM of Mobile Robot Based on the Joint Optimization of LiDAR and Camera. In Proceedings of the 2022 7th International Conference on Control and Robotics Engineering (ICCRE), Beijing, China, 15–17 April 2022; pp. 21–25. [Google Scholar]
- Oh, S.H.; Hwan, K.D.; Lim, H.T. 2.5D SLAM Algorithm with Novel Data Fusion Method Between 2D-Lidar and Camera. In Proceedings of the 2023 23rd International Conference on Control, Automation and Systems (ICCAS), Yeosu, Republic of Korea, 17–20 October 2023; pp. 1904–1907. [Google Scholar]
- Mu, L.; Yao, P.; Zheng, Y.; Chen, K.; Wang, F.; Qi, N. Research on SLAM Algorithm of Mobile Robot Based on the Fusion of 2D LiDAR and Depth Camera. IEEE Access 2020, 8, 157628–157642. [Google Scholar] [CrossRef]
- Chen, B.; Li, P.; Li, H. Fast Loop Closures Detection Method for Geomagnetic Signal and Lidar Fusion. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference, Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Xu, X.; Lu, S.; Wu, J.; Lu, H.; Zhu, Q.; Liao, Y.; Xiong, R.; Wang, Y. RING++: Roto-Translation Invariant Gram for Global Localization on a Sparse Scan Map. IEEE Trans. Robot. 2023, 39, 4616–4635. [Google Scholar]
- Liang, X.; Chen, H.; Li, Y.; Liu, Y. Visual laser-SLAM in large-scale indoor environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 19–24. [Google Scholar]
- Zhang, J.; Lei, J.; Zhao, Y.; Yang, K.; Liu, L.; Peng, X.; He, K. The Robot Fusion Mapping Method Applied in Indoor Poultry Farming Environment. In Proceedings of the 2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR), Tianjin, China, 8–10 December 2023; pp. 597–602. [Google Scholar]
- Sarlin, P.; Cadena, C.; Siegwart, R.; Dymczyk, M. From coarse to fine: Robust hierarchical localization at large scale. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12708–12717. [Google Scholar]
- Zhou, Z.; Guo, C.; Pan, Y.; Li, X.; Jiang, W. A 2-D LiDAR-SLAM Algorithm for Indoor Similar Environment with Deep Visual Loop Closure. IEEE Sens. J. 2023, 23, 14650–14661. [Google Scholar]
- Qin, H.; Huang, M.; Cao, J.; Zhang, X. Loop closure detection in SLAM by combining visual CNN features and submaps. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; pp. 426–430. [Google Scholar]
- Lu, G. SLAM Based on Camera-2D LiDAR Fusion. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 16818–16825. [Google Scholar]
Manufacturer | Product Model | Parameter | Method | |||
---|---|---|---|---|---|---|
Range | Range Accuracy | Sampling Frequency | Angular Resolution | |||
Hokuyo | UST-20LX 2D | 20 m | ±40 mm | 0.25° | TOF | |
SICK | PicoScan120 | 30 m | ±20 mm | 20 K | 0.10° | TOF |
Pepperl+Fuchs | OMD30M-R2000-B23-V1V1D-HD | 30 m | ± 25 mm | 84 K | 0.042° | TOF |
SLAMTEC | RPLIDAR S3 | 40 m | ±30 mm | 32 K | 0.1125° | SL-TOF |
RPLIDAR A3 | 25 m | Range × 1% (≤3 m) | 16 K | 0.225° | Triangulation ranging | |
Range × 2% (3–5 m) | ||||||
Range × 2.5% (5–25 m) | ||||||
LSLIDAR | M10P | 25 m | ±3 cm | 12 K | 0.22° | TOF |
N301-60 | 60 m | ±1 cm | 5 K | 0.09° | TOF | |
OLEI | LR-1BS5H | 25 m | ±2 cm | 25 K | 0.225° | TOF |
richbeam | LoraBeam 1L | 40 m | 2 cm | 10–30 K | 0.08–0.24 | DTOF |
Name | Characteristic |
---|---|
Filter-based SLAM | |
EKF SLAM | Capable of building a sparse map using features, but with a high computational cost and limited robustness. |
Fast SLAM1,2 | The first particle filter algorithm, the earliest to introduce real-time output grid map, but with particle degradation and lacking loop detection. |
Gmapping | Based on the particle filter, mitigates particle degradation but relies on odometry; lacking loop detection, only suitable for small-scale scene construction. |
Core SLAM | Based on particle filter, it expends fewer resources but entails a large error. |
Scan matching-based SLAM | |
Hector SLAM | Based on Gauss–Newton, the pose can be constructed in real time without an odometer. Sensitive to initial value, lacking loop detection, difficult to guarantee accuracy, applicable to air or flat-road environments, drifts with fast rotation. |
L-L ICP SLAM | Uses linear feature matching but is difficult to apply in indoor corridor environments. |
Fourier Transform-Based Matching SLAM | The innovative use of Fourier transform to achieve matching. |
Graph optimization-based SLAM | |
KartoSLAM | The first open-source SLAM based on graph optimization, with a long optimization time and high complexity. |
Cartographer | A classic diagram optimization SLAM, applicable to 2D/3D radar, with the front end adopting CSM and gradient optimization and the back end adopting graph optimization, with accelerated closed-loop detection. Strong real-time performance, applicable to large scenes. |
LagoSLAM | Linear approximate graph optimization without initial assumptions. |
ICP-SLAM | Builds a multi-point cloud density search tree, reducing complexity. |
GP-SLAM | Applicable to medium and small map construction, and the map cannot be directly navigated. |
Deep learning-based SLAM | |
CNN SLAM | The deep learning method can adapt to various situations and improve accuracy and robustness, but it requires a large amount of data-scene changes, which reduces detection accuracy. |
No. | Feature | No. | Feature | No. | Feature |
---|---|---|---|---|---|
1 | Number of points | 6 | Width | 11 | Average distance from median |
2 | Standard deviation | 7 | Length | 12 | Occluded (Boolean) |
3 | Boundary regularity | 8 | Circularity | 13 | Radius of best-fit circle |
4 | Boundary length | 9 | Linearity | 14 | Inscribed angular Variable |
5 | Mean angular difference | 10 | Mean curvature | 15 | Distance from laser scanner |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Y.; Xu, X.; Tan, Z.; Luo, M. A Review of 2D Lidar SLAM Research. Remote Sens. 2025, 17, 1214. https://doi.org/10.3390/rs17071214
Ran Y, Xu X, Tan Z, Luo M. A Review of 2D Lidar SLAM Research. Remote Sensing. 2025; 17(7):1214. https://doi.org/10.3390/rs17071214
Chicago/Turabian StyleRan, Yingying, Xiaobin Xu, Zhiying Tan, and Minzhou Luo. 2025. "A Review of 2D Lidar SLAM Research" Remote Sensing 17, no. 7: 1214. https://doi.org/10.3390/rs17071214
APA StyleRan, Y., Xu, X., Tan, Z., & Luo, M. (2025). A Review of 2D Lidar SLAM Research. Remote Sensing, 17(7), 1214. https://doi.org/10.3390/rs17071214