Improving AOD Algorithm Evaluation: A Spatial Matching Method for Minimizing Quality Control Bias
Abstract
:1. Introduction
2. Data Description
2.1. Satellite AOD Datasets
2.2. AERONET
2.3. Others
3. Methods
3.1. Overview of AOD Matching Method
- “Direct” Method: This method selects the satellite-derived AOD value from the pixel covering the ground station. Mathematically, the AOD value is determined as
- “Average” Method: This common approach involves averaging AOD values within a spatial window centered on the ground station [19]. Mathematically, the AOD value is determined as
- “Optimal” Method: This method, proposed in this study, selects the retrieved AOD value that exhibits the smallest absolute error relative to the ground-based measurement. Mathematically, the AOD value is determined as
3.2. Differences of Three Spatial Matching Methods
- The selected pixel may not align with the true transport direction of aerosols, limiting the method’s physical interpretability and necessitating the assumption that aerosols are homogeneously distributed within the spatial window.
- This method is susceptible to retrieval algorithm biases. When the atmospheric conditions observed by the satellite differ significantly from those at the ground station, larger algorithmic errors can sometimes make the retrieved AOD appear closer to the ground-based measurement. As a result, the “optimal” method may select a retrieval that matches the observation numerically but does not accurately reflect the true aerosol conditions. For example, in MOD(DT), certain QA = 0 AOD values have been observed to align more closely with ground-based measurements than QA = 3 values, despite QA = 0 AOD retrievals potentially violating key algorithmic assumptions.
3.3. Selection of Window Size and Matching Constraints
3.4. Evaluation Metrics
- =EE: Percentage of total data within the expected error range (±(0.05 + 15%)).
- >EE: Percentage of total data exceeding the expected value (+(0.05 + 15%)).
- <EE: Percentage of total data below the expected value (−(0.05 + 15%)).
4. Results and Discussion
4.1. Overall Results Under Three Matching Methods
- First, although the “optimal” method aims to select retrievals spatially closest to the AERONET site, it cannot fully eliminate the influence of subpixel clouds or cloud shadows. Residual thin clouds or elevated humidity levels may be misclassified as aerosol signals, leading to inflated AOD estimates. This effect is particularly pronounced in regions with frequent convective activity or in humid seasons, where cloud contamination is more difficult to detect.
- Second, most aerosol retrieval algorithms favor pixels with lower surface reflectance, as these conditions enhance the aerosol signal-to-noise ratio. However, this selection preference may introduce a bias: by preferentially using pixels with darker surfaces, the algorithm may adopt surface reflectance values that are lower than the actual conditions at the time of observation. This can lead to a systematic overestimation of aerosol loading. Additionally, in heterogeneous or dynamic surface environments, static surface reflectance databases may not accurately represent current surface conditions, further contributing to retrieval errors.
- First, the DT algorithm is highly sensitive to dark target pixels, showing particularly high accuracy for pixels that meet the dark target criteria. From the perspective of optimal pixel selection, accuracy improves significantly when a sufficient number of pixels meet the dark target criteria.
- Second, as the resolution increases to 3 km, the higher pixel resolution and purer dark target signals lead to improved retrieval accuracy. However, for pixels that do not fully meet the criteria, the accuracy is more heavily impacted, resulting in greater uncertainty.
4.2. Impact of Land Cover and Seasonal Variability on Retrieval Accuracy
4.2.1. Land Cover Variability
4.2.2. Seasonal Variability
4.3. Comparison of DB and DT Products at Site Level
- Optimization of surface feature selection: Existing site data can be leveraged to identify the most suitable surface characteristics for the DT algorithm. A global mask could then be developed to ensure that the DT algorithm is applied exclusively in these regions.
- Improved resolution adaptation: Given the strict applicability assumptions of the DT algorithm, employing it at higher resolutions would allow for the selection of clearer pixels that meet retrieval criteria, thereby enhancing overall accuracy.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Validation Results
Alias | Method | >EE(%) | =EE(%) | <EE(%) | R2 | RMSE | CC | RMB | FB(%) | Pairs | Sites |
---|---|---|---|---|---|---|---|---|---|---|---|
MOD3K (DT) | direct | 29.53 | 62.09 | 8.38 | 0.559 | 0.156 | 0.83 | 1.21 | 18.01 | 111,304 | 814 |
average | 37.1 | 59.11 | 3.79 | 0.638 | 0.129 | 0.874 | 1.365 | 36.78 | 264,711 | 854 | |
optimal | 10.08 | 89.45 | 0.48 | 0.9 | 0.067 | 0.955 | 1.117 | 14.6 | 270,330 | 854 | |
MOD (DT) | direct | 25.6 | 64.73 | 9.67 | 0.586 | 0.147 | 0.826 | 1.142 | 12.68 | 139,319 | 821 |
average | 28.44 | 66.34 | 5.22 | 0.726 | 0.115 | 0.891 | 1.23 | 24.11 | 212,138 | 848 | |
optimal | 12.83 | 85.4 | 1.77 | 0.875 | 0.077 | 0.943 | 1.116 | 14.75 | 217,053 | 848 | |
MOD (DB) | direct | 12.89 | 73.54 | 13.57 | 0.65 | 0.132 | 0.839 | 0.966 | −14.26 | 182,715 | 795 |
average | 14.03 | 74.13 | 11.84 | 0.729 | 0.116 | 0.874 | 1.004 | −5.79 | 226,706 | 808 | |
optimal | 5.5 | 89.39 | 5.11 | 0.873 | 0.08 | 0.938 | 0.988 | −3.29 | 226,706 | 808 | |
MOD (DTB) | direct | 22.58 | 66.18 | 11.24 | 0.578 | 0.145 | 0.82 | 1.102 | 4.73 | 179,540 | 837 |
average | 23.68 | 69.48 | 6.83 | 0.723 | 0.115 | 0.885 | 1.172 | 15.59 | 244,392 | 859 | |
optimal | 9.54 | 88.09 | 2.37 | 0.881 | 0.075 | 0.944 | 1.076 | 8.09 | 249,095 | 859 | |
MOD (MAIAC) | direct | 16.19 | 74.81 | 9.0 | 0.754 | 0.095 | 0.872 | 1.028 | 6.82 | 232,087 | 829 |
average | 18.34 | 74.32 | 7.34 | 0.75 | 0.1 | 0.868 | 1.072 | 16.05 | 310,077 | 760 | |
optimal | 3.02 | 95.92 | 1.06 | 0.943 | 0.047 | 0.971 | 1.01 | 3.54 | 309,173 | 760 | |
MYD3K (DT) | direct | 24.87 | 64.55 | 10.58 | 0.438 | 0.175 | 0.749 | 1.101 | 6.0 | 104,923 | 824 |
average | 29.47 | 66.04 | 4.49 | 0.658 | 0.125 | 0.871 | 1.268 | 22.33 | 245,354 | 850 | |
optimal | 8.09 | 91.32 | 0.59 | 0.899 | 0.067 | 0.953 | 1.089 | 9.87 | 254,751 | 850 | |
MYD (DT) | direct | 21.53 | 66.29 | 12.18 | 0.435 | 0.176 | 0.728 | 1.03 | 0.55 | 121,026 | 824 |
average | 21.63 | 72.41 | 5.95 | 0.735 | 0.112 | 0.887 | 1.15 | 10.77 | 190,472 | 839 | |
optimal | 9.69 | 88.16 | 2.14 | 0.87 | 0.078 | 0.938 | 1.076 | 7.12 | 197,096 | 839 | |
MYD (DB) | direct | 12.87 | 76.19 | 10.94 | 0.653 | 0.13 | 0.84 | 0.997 | −9.17 | 155,875 | 775 |
average | 13.99 | 76.26 | 9.75 | 0.744 | 0.113 | 0.881 | 1.026 | −1.98 | 201,296 | 797 | |
optimal | 5.58 | 90.26 | 4.15 | 0.879 | 0.078 | 0.94 | 1.002 | −1.24 | 201,295 | 797 | |
MYD (DTB) | direct | 19.94 | 67.49 | 12.57 | 0.459 | 0.167 | 0.744 | 1.025 | −2.78 | 157,158 | 839 |
average | 19.14 | 74.01 | 6.85 | 0.734 | 0.112 | 0.886 | 1.12 | 6.34 | 222,677 | 850 | |
optimal | 7.74 | 89.89 | 2.37 | 0.877 | 0.075 | 0.942 | 1.054 | 3.43 | 229,127 | 850 | |
MYD (MAIAC) | direct | 21.06 | 71.28 | 7.66 | 0.758 | 0.097 | 0.875 | 1.089 | 17.43 | 251,899 | 840 |
average | 22.2 | 71.15 | 6.65 | 0.748 | 0.102 | 0.87 | 1.12 | 24.21 | 320,728 | 765 | |
optimal | 3.56 | 95.29 | 1.15 | 0.939 | 0.05 | 0.969 | 1.017 | 5.02 | 319,633 | 765 | |
NOAA (DB) | direct | 13.1 | 78.13 | 8.77 | 0.66 | 0.133 | 0.837 | 1.02 | −2.41 | 115,751 | 561 |
average | 10.5 | 82.98 | 6.51 | 0.822 | 0.091 | 0.913 | 1.019 | 1.13 | 151,796 | 562 | |
optimal | 3.0 | 95.68 | 1.32 | 0.947 | 0.05 | 0.973 | 1.01 | 2.04 | 151,796 | 562 | |
NOAA (DT) | direct | 24.31 | 60.87 | 14.81 | 0.208 | 0.199 | 0.67 | 1.09 | −2.37 | 100,700 | 581 |
average | 19.87 | 70.58 | 9.54 | 0.664 | 0.124 | 0.862 | 1.111 | 1.12 | 152,090 | 584 | |
optimal | 6.04 | 91.92 | 2.04 | 0.883 | 0.071 | 0.944 | 1.041 | 1.7 | 165,633 | 587 | |
SNPP (DB) | direct | 12.1 | 79.32 | 8.58 | 0.684 | 0.126 | 0.847 | 1.01 | −2.92 | 239,122 | 800 |
average | 9.63 | 83.51 | 6.86 | 0.832 | 0.089 | 0.917 | 1.003 | 0.03 | 313,791 | 814 | |
optimal | 2.65 | 95.91 | 1.45 | 0.947 | 0.05 | 0.973 | 1.004 | 1.8 | 313,791 | 814 | |
SNPP (DT) | direct | 37.2 | 55.3 | 7.51 | −0.027 | 0.226 | 0.7 | 1.395 | 26.09 | 203,907 | 834 |
average | 38.44 | 58.03 | 3.53 | 0.455 | 0.157 | 0.861 | 1.435 | 34.39 | 325,935 | 850 | |
optimal | 13.03 | 86.27 | 0.69 | 0.805 | 0.093 | 0.926 | 1.167 | 15.35 | 336,799 | 850 |
Alias | Method | >EE(%) | =EE(%) | <EE(%) | R2 | RMSE | CC | RMB | FB(%) | Pairs | Sites |
---|---|---|---|---|---|---|---|---|---|---|---|
MOD3K (DT) | direct | 29.53 | 62.09 | 8.38 | 0.559 | 0.156 | 0.83 | 1.21 | 18.01 | 111,304 | 814 |
average | 27.59 | 68.09 | 4.33 | 0.756 | 0.107 | 0.913 | 1.233 | 23.36 | 157,466 | 799 | |
optimal | 2.67 | 96.86 | 0.46 | 0.972 | 0.036 | 0.987 | 1.032 | 5.19 | 162,100 | 799 | |
MOD (DT) | direct | 25.6 | 64.73 | 9.67 | 0.586 | 0.147 | 0.826 | 1.142 | 12.68 | 139,319 | 821 |
average | 24.86 | 69.43 | 5.71 | 0.749 | 0.111 | 0.904 | 1.188 | 17.28 | 153,143 | 810 | |
optimal | 12.04 | 85.29 | 2.67 | 0.878 | 0.077 | 0.946 | 1.095 | 10.36 | 156,800 | 811 | |
MOD (DB) | direct | 12.89 | 73.54 | 13.57 | 0.65 | 0.132 | 0.839 | 0.966 | −14.26 | 182,715 | 795 |
average | 12.9 | 75.67 | 11.43 | 0.756 | 0.11 | 0.888 | 0.994 | −7.54 | 187,093 | 782 | |
optimal | 5.75 | 87.9 | 6.35 | 0.868 | 0.081 | 0.936 | 0.973 | −6.5 | 187,093 | 782 | |
MOD (DTB) | direct | 22.58 | 66.18 | 11.24 | 0.578 | 0.145 | 0.82 | 1.102 | 4.73 | 179,540 | 837 |
average | 21.35 | 71.11 | 7.54 | 0.735 | 0.113 | 0.893 | 1.141 | 9.91 | 190,897 | 836 | |
optimal | 9.81 | 86.3 | 3.89 | 0.867 | 0.079 | 0.939 | 1.06 | 3.89 | 194,512 | 837 | |
MOD (MAIAC) | direct | 16.19 | 74.81 | 9.0 | 0.754 | 0.095 | 0.872 | 1.028 | 6.82 | 232,087 | 829 |
average | 12.46 | 80.09 | 7.45 | 0.814 | 0.081 | 0.902 | 1.011 | 9.45 | 270,861 | 798 | |
optimal | 0.68 | 98.16 | 1.16 | 0.97 | 0.032 | 0.986 | 0.985 | 1.08 | 270,450 | 798 | |
MYD3K (DT) | direct | 24.87 | 64.55 | 10.58 | 0.438 | 0.175 | 0.749 | 1.101 | 6.0 | 104,923 | 824 |
average | 20.09 | 75.08 | 4.83 | 0.772 | 0.1 | 0.912 | 1.151 | 8.69 | 141,317 | 805 | |
optimal | 1.5 | 98.06 | 0.44 | 0.975 | 0.033 | 0.988 | 1.016 | 1.35 | 148,716 | 805 | |
MYD (DT) | direct | 21.53 | 66.29 | 12.18 | 0.435 | 0.176 | 0.728 | 1.03 | 0.55 | 121,026 | 824 |
average | 19.35 | 74.69 | 5.96 | 0.768 | 0.104 | 0.906 | 1.123 | 5.27 | 132,668 | 806 | |
optimal | 8.68 | 88.5 | 2.83 | 0.889 | 0.071 | 0.949 | 1.056 | 2.41 | 137,172 | 806 | |
MYD (DB) | direct | 12.87 | 76.19 | 10.94 | 0.653 | 0.13 | 0.84 | 0.997 | −9.17 | 155,875 | 775 |
average | 12.65 | 78.08 | 9.27 | 0.773 | 0.105 | 0.896 | 1.018 | −3.47 | 160,047 | 759 | |
optimal | 5.58 | 89.5 | 4.92 | 0.88 | 0.076 | 0.942 | 0.991 | −3.74 | 160,046 | 759 | |
MYD (DTB) | direct | 19.94 | 67.49 | 12.57 | 0.459 | 0.167 | 0.744 | 1.025 | −2.78 | 157,158 | 839 |
average | 17.82 | 75.13 | 7.04 | 0.753 | 0.107 | 0.898 | 1.103 | 2.44 | 167,487 | 829 | |
optimal | 7.72 | 88.83 | 3.44 | 0.879 | 0.074 | 0.944 | 1.04 | −0.5 | 171,837 | 829 | |
MYD (MAIAC) | direct | 21.06 | 71.28 | 7.66 | 0.758 | 0.097 | 0.875 | 1.089 | 17.43 | 251,899 | 840 |
average | 17.57 | 75.78 | 6.65 | 0.808 | 0.085 | 0.9 | 1.069 | 19.44 | 287,430 | 805 | |
optimal | 1.31 | 97.4 | 1.29 | 0.964 | 0.037 | 0.983 | 0.992 | 3.33 | 286,755 | 805 | |
NOAA (DB) | direct | 13.1 | 78.13 | 8.77 | 0.66 | 0.133 | 0.837 | 1.02 | −2.41 | 115,751 | 561 |
average | 8.77 | 85.18 | 6.05 | 0.851 | 0.085 | 0.928 | 1.007 | −0.67 | 115,163 | 538 | |
optimal | 1.57 | 97.04 | 1.39 | 0.957 | 0.045 | 0.979 | 0.991 | −0.64 | 115,163 | 538 | |
NOAA (DT) | direct | 24.31 | 60.87 | 14.81 | 0.208 | 0.199 | 0.67 | 1.09 | −2.37 | 100,700 | 581 |
average | 19.18 | 71.69 | 9.13 | 0.658 | 0.122 | 0.872 | 1.112 | −1.41 | 107,791 | 574 | |
optimal | 3.76 | 92.99 | 3.25 | 0.9 | 0.064 | 0.953 | 1.001 | −4.77 | 116,924 | 577 | |
SNPP (DB) | direct | 12.1 | 79.32 | 8.58 | 0.684 | 0.126 | 0.847 | 1.01 | −2.92 | 239,122 | 800 |
average | 7.83 | 85.92 | 6.25 | 0.863 | 0.081 | 0.933 | 0.991 | −1.52 | 239,053 | 769 | |
optimal | 1.3 | 97.23 | 1.47 | 0.961 | 0.043 | 0.98 | 0.986 | −0.77 | 239,053 | 769 | |
SNPP (DT) | direct | 37.2 | 55.3 | 7.51 | −0.027 | 0.226 | 0.7 | 1.395 | 26.09 | 203,907 | 834 |
average | 36.49 | 60.32 | 3.19 | 0.439 | 0.154 | 0.874 | 1.429 | 31.31 | 233,619 | 820 | |
optimal | 11.26 | 87.75 | 0.99 | 0.842 | 0.081 | 0.944 | 1.145 | 12.21 | 241,513 | 820 |
References
- Bilal, M.; Nichol, J.E.; Wang, L. New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sens. Environ. 2017, 197, 115–124. [Google Scholar]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Kassianov, E.; Cromwell, E.; Monroe, J.; Riihimaki, L.D.; Flynn, C.; Barnard, J.; Michalsky, J.J.; Hodges, G.; Shi, Y.; Comstock, J.M. Harmonized and high-quality datasets of aerosol optical depth at a US continental site, 1997–2018. Sci. Data 2021, 8, 82. [Google Scholar]
- Papachristopoulou, K.; Raptis, I.P.; Gkikas, A.; Fountoulakis, I.; Masoom, A.; Kazadzis, S. Aerosol optical depth regime over megacities of the world. Atmos. Chem. Phys. 2022, 22, 15703–15727. [Google Scholar]
- Wang, Y.; Wang, J.; Levy, R.C.; Shi, Y.R.; Mattoo, S.; Reid, J.S. First retrieval of AOD at fine resolution over shallow and turbid coastal waters from MODIS. Geophys. Res. Lett. 2021, 48, e2021GL094344. [Google Scholar] [CrossRef]
- Murphy, R.E.; Barnes, W.L.; Lyapustin, A.I.; Privette, J.; Welsch, C.; DeLuccia, F.; Swenson, H.; Schueler, C.F.; Ardanuy, P.E.; Kealy, P.S. Using VIIRS to provide data continuity with MODIS. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; IEEE: New York, NY, USA, 2001; Volume 3, pp. 1212–1214. [Google Scholar]
- Levy, R.; Munchak, L.; Mattoo, S.; Patadia, F.; Remer, L.; Holz, R. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 2015, 8, 4083–4110. [Google Scholar]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue aerosol data over land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.C.; Li, R.R.; Flynn, L. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Sayer, A.; Munchak, L.; Hsu, N.; Levy, R.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13–965. [Google Scholar]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29, MOD1-1–MOD1-4. [Google Scholar]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar]
- De Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 2015, 162, 295–315. [Google Scholar]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 km resolution aerosol optical depth product: Global evaluation and uncertainty analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Yang, J.; Zhou, D. Evaluation and comparison of VIIRS dark target and deep blue aerosol products over land. Sci. Total Environ. 2023, 869, 161667. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Yu, T.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- He, Q.; Li, C.; Geng, F.; Zhou, G.; Gao, W.; Yu, W.; Li, Z.; Du, M. A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sens. Environ. 2016, 181, 1–13. [Google Scholar] [CrossRef]
- Myhre, G.; Stordal, F.; Johnsrud, M.; Kaufman, Y.; Rosenfeld, D.; Storelvmo, T.; Kristjansson, J.E.; Berntsen, T.K.; Myhre, A.; Isaksen, I.S. Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys. 2007, 7, 3081–3101. [Google Scholar] [CrossRef]
- Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Henderson, B.G.; Chylek, P. The effect of spatial resolution on satellite aerosol optical depth retrieval. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1984–1990. [Google Scholar] [CrossRef]
- Cai, H.; Zhong, B.; Liu, H.; Du, B.; Liu, Q.; Wu, S.; Li, L.; Yang, A.; Wu, J.; Gu, X.; et al. An improved deep learning network for AOD retrieving from remote sensing imagery focusing on sub-pixel cloud. GISci. Remote Sens. 2023, 60, 2262836. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.; King, M.; Kaufman, Y.; Eck, T.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- O’Neill, N.; Eck, T.; Holben, B.; Smirnov, A.; Dubovik, O.; Royer, A. Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space. J. Geophys. Res. Atmos. 2001, 106, 9787–9806. [Google Scholar] [CrossRef]
- Levy, R.; Remer, L.; Kleidman, R.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.; Bettenhausen, C.; Jeong, M.J.; Holben, B.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef]
Product | Version | Scientific DataSet | Alias | Algorithm | Spatial Resolution |
---|---|---|---|---|---|
MOD04_3K | C6.1 | Image_Optical_Depth_Land _And_Ocean | MOD3K(DT) | DT | 3 km |
MOD04_L2 | C6.1 | Image_Optical_Depth_Land _And_Ocean | MOD(DT) | DT | 10 km |
MOD04_L2 | C6.1 | Deep_Blue_Aerosol_Optical_Depth _550_Land | MOD(DB) | DB | 10 km |
MOD04_L2 | C6.1 | AOD_550_Dark_Target_Deep_Blue _Combined | MOD(DTB) | DTB | 10 km |
MYD04_3K | C6.1 | Image_Optical_Depth_Land _And_Ocean | MYD3K(DT) | DT | 3 km |
MYD04_L2 | C6.1 | Image_Optical_Depth_Land _And_Ocean | MYD(DT) | DT | 10 km |
MYD04_L2 | C6.1 | Deep_Blue_Aerosol_Optical_Depth _550_Land | MYD(DB) | DB | 10 km |
MYD04_L2 | C6.1 | AOD_550_Dark_Target_Deep_Blue _Combined | MYD(DTB) | DTB | 10 km |
AERDB_L2_VIIRS _NOAA20 | V2.0 | Aerosol_Optical_Thickness _550_Land | NOAA(DB) | DB | 6 km |
AERDT_L2_VIIRS_NOAA20 | V2.0 | Image_Optical_Depth_Land _And_Ocean | NOAA(DT) | DT | 6 km |
AERDB_L2_VIIRS_SNPP | V2.0 | Aerosol_Optical_Thickness _550_Land | SNPP(DB) | DB | 6 km |
AERDT_L2_VIIRS_SNPP | V2.0 | Image_Optical_Depth_Land _And_Ocean | SNPP(DT) | DT | 6 km |
MCD19A2 | C6.1 | Optical_Depth_055 | MOD(MAIAC) /MYD(MAIAC) | MAIAC | 1 km |
Alias | Method | >EE(%) | =EE(%) | <EE(%) | R2 | RMSE | CC | RMB | FB(%) | Pairs | Sites |
---|---|---|---|---|---|---|---|---|---|---|---|
MOD3K (DT) | direct | 29.53 | 62.09 | 8.38 | 0.559 | 0.156 | 0.83 | 1.21 | 18.01 | 111,304 | 814 |
average | 38.64 | 57.9 | 3.45 | 0.6 | 0.134 | 0.875 | 1.398 | 37.94 | 260,031 | 851 | |
optimal | 13.7 | 85.69 | 0.61 | 0.857 | 0.08 | 0.94 | 1.161 | 18.4 | 265,420 | 852 | |
MOD (DT) | direct | 25.6 | 64.73 | 9.67 | 0.586 | 0.147 | 0.826 | 1.142 | 12.68 | 139,319 | 821 |
average | 27.7 | 66.9 | 5.4 | 0.717 | 0.116 | 0.895 | 1.226 | 21.36 | 183,362 | 830 | |
optimal | 16.89 | 80.25 | 2.86 | 0.829 | 0.09 | 0.928 | 1.146 | 15.48 | 187,019 | 831 | |
MOD (DB) | direct | 12.89 | 73.54 | 13.57 | 0.65 | 0.132 | 0.839 | 0.966 | −14.26 | 182,715 | 795 |
average | 14.07 | 74.43 | 11.5 | 0.732 | 0.115 | 0.878 | 1.01 | −6.17 | 208,594 | 797 | |
optimal | 7.65 | 85.4 | 6.95 | 0.832 | 0.091 | 0.92 | 0.991 | −5.24 | 208,594 | 797 | |
MOD (DTB) | direct | 22.58 | 66.18 | 11.24 | 0.578 | 0.145 | 0.82 | 1.102 | 4.73 | 179,540 | 837 |
average | 23.59 | 69.16 | 7.26 | 0.707 | 0.118 | 0.885 | 1.171 | 12.99 | 219,959 | 848 | |
optimal | 13.51 | 82.4 | 4.09 | 0.823 | 0.091 | 0.922 | 1.099 | 7.7 | 223,574 | 849 | |
MOD (MAIAC) | direct | 16.19 | 74.81 | 9.0 | 0.754 | 0.095 | 0.872 | 1.028 | 6.82 | 232,087 | 829 |
average | 19.41 | 73.55 | 7.04 | 0.743 | 0.098 | 0.866 | 1.092 | 16.72 | 319,655 | 804 | |
optimal | 4.2 | 94.45 | 1.35 | 0.927 | 0.052 | 0.963 | 1.02 | 5.06 | 318,732 | 804 | |
MYD3K (DT) | direct | 24.87 | 64.55 | 10.58 | 0.438 | 0.175 | 0.749 | 1.101 | 6.0 | 104,923 | 824 |
average | 30.97 | 65.06 | 3.97 | 0.632 | 0.128 | 0.874 | 1.3 | 23.92 | 240,115 | 843 | |
optimal | 10.78 | 88.47 | 0.75 | 0.865 | 0.077 | 0.941 | 1.12 | 11.99 | 248,806 | 843 | |
MYD (DT) | direct | 21.53 | 66.29 | 12.18 | 0.435 | 0.176 | 0.728 | 1.03 | 0.55 | 121,026 | 824 |
average | 21.72 | 72.55 | 5.73 | 0.73 | 0.112 | 0.895 | 1.156 | 9.13 | 160,902 | 822 | |
optimal | 12.8 | 84.06 | 3.14 | 0.833 | 0.087 | 0.927 | 1.099 | 6.65 | 165,406 | 822 | |
MYD (DB) | direct | 12.87 | 76.19 | 10.94 | 0.653 | 0.13 | 0.84 | 0.997 | −9.17 | 155,875 | 775 |
average | 13.96 | 76.73 | 9.31 | 0.756 | 0.11 | 0.89 | 1.035 | −1.94 | 181,428 | 783 | |
optimal | 7.71 | 86.81 | 5.48 | 0.85 | 0.086 | 0.929 | 1.011 | −2.17 | 181,427 | 783 | |
MYD (DTB) | direct | 19.94 | 67.49 | 12.57 | 0.459 | 0.167 | 0.744 | 1.025 | −2.78 | 157,158 | 839 |
average | 19.7 | 73.48 | 6.82 | 0.721 | 0.113 | 0.889 | 1.13 | 5.29 | 195,926 | 837 | |
optimal | 11.0 | 85.27 | 3.73 | 0.83 | 0.088 | 0.925 | 1.075 | 2.7 | 200,276 | 837 | |
MYD (MAIAC) | direct | 21.06 | 71.28 | 7.66 | 0.758 | 0.097 | 0.875 | 1.089 | 17.43 | 251,899 | 840 |
average | 23.5 | 70.16 | 6.34 | 0.736 | 0.102 | 0.865 | 1.142 | 25.11 | 331,285 | 811 | |
optimal | 5.04 | 93.53 | 1.43 | 0.919 | 0.056 | 0.959 | 1.03 | 7.24 | 330,109 | 811 | |
NOAA (DB) | direct | 13.1 | 78.13 | 8.77 | 0.66 | 0.133 | 0.837 | 1.02 | −2.41 | 115,751 | 561 |
average | 10.88 | 82.94 | 6.19 | 0.826 | 0.09 | 0.917 | 1.031 | 1.57 | 140,319 | 557 | |
optimal | 4.03 | 93.91 | 2.06 | 0.927 | 0.059 | 0.963 | 1.011 | 1.09 | 140,319 | 557 | |
NOAA (DT) | direct | 24.31 | 60.87 | 14.81 | 0.208 | 0.199 | 0.67 | 1.09 | −2.37 | 100,700 | 581 |
average | 23.93 | 67.77 | 8.3 | 0.568 | 0.137 | 0.848 | 1.186 | 6.7 | 141,623 | 579 | |
optimal | 9.8 | 86.6 | 3.61 | 0.794 | 0.093 | 0.911 | 1.075 | 2.0 | 151,289 | 582 | |
SNPP (DB) | direct | 12.1 | 79.32 | 8.58 | 0.684 | 0.126 | 0.847 | 1.01 | −2.92 | 239,122 | 800 |
average | 9.84 | 83.74 | 6.43 | 0.838 | 0.087 | 0.922 | 1.014 | 0.73 | 291,049 | 805 | |
optimal | 3.56 | 94.28 | 2.16 | 0.931 | 0.057 | 0.966 | 1.004 | 0.88 | 291,049 | 805 | |
SNPP (DT) | direct | 37.2 | 55.3 | 7.51 | −0.027 | 0.226 | 0.7 | 1.395 | 26.09 | 203,907 | 834 |
average | 42.04 | 54.98 | 2.98 | 0.258 | 0.177 | 0.843 | 1.528 | 38.52 | 302,995 | 841 | |
optimal | 20.09 | 78.72 | 1.19 | 0.636 | 0.123 | 0.888 | 1.268 | 21.44 | 311,172 | 841 |
Alias | Method | =EE | |||
---|---|---|---|---|---|
(0.05 + 20%) | (0.05 + 15%) | (0.03 + 10%) | max (0.03;10%) | ||
MOD3K (DT) | direct | 65.81 | 62.09 | 43.3 | 33.41 |
average | 61.39 | 57.9 | 39.47 | 30.32 | |
optimal | 86.79 | 85.69 | 78.32 | 74.09 | |
MOD (DT) | direct | 68.56 | 64.73 | 45.37 | 35.13 |
average | 70.64 | 66.9 | 46.98 | 36.15 | |
optimal | 82.46 | 80.25 | 66.94 | 58.42 | |
MOD (DB) | direct | 76.88 | 73.54 | 54.93 | 45.25 |
average | 77.82 | 74.43 | 55.76 | 45.71 | |
optimal | 87.5 | 85.4 | 73.89 | 66.2 | |
MOD (DTB) | direct | 69.83 | 66.18 | 47.45 | 37.75 |
average | 72.8 | 69.16 | 49.72 | 39.22 | |
optimal | 84.53 | 82.4 | 70.0 | 61.72 | |
MOD (MAIAC) | direct | 77.91 | 74.81 | 55.89 | 45.41 |
average | 76.55 | 73.55 | 55.33 | 44.9 | |
optimal | 95.07 | 94.45 | 91.05 | 88.74 | |
MYD3K (DT) | direct | 68.04 | 64.55 | 46.82 | 36.83 |
average | 68.29 | 65.06 | 47.54 | 37.49 | |
optimal | 89.46 | 88.47 | 82.55 | 78.64 | |
MYD (DT) | direct | 69.81 | 66.29 | 47.99 | 37.72 |
average | 76.01 | 72.55 | 53.55 | 42.26 | |
optimal | 86.09 | 84.06 | 71.77 | 62.94 | |
MYD (DB) | direct | 79.2 | 76.19 | 58.7 | 48.96 |
average | 79.93 | 76.73 | 58.84 | 48.54 | |
optimal | 88.78 | 86.81 | 76.04 | 68.61 | |
MYD (DTB) | direct | 70.9 | 67.49 | 49.65 | 39.92 |
average | 76.87 | 73.48 | 54.9 | 44.0 | |
optimal | 87.22 | 85.27 | 73.7 | 65.26 | |
MYD (MAIAC) | direct | 74.34 | 71.28 | 52.37 | 41.95 |
average | 73.18 | 70.16 | 51.57 | 41.03 | |
optimal | 94.24 | 93.53 | 89.46 | 86.94 | |
NOAA (DB) | direct | 81.13 | 78.13 | 60.68 | 50.23 |
average | 85.83 | 82.94 | 65.75 | 54.33 | |
optimal | 94.91 | 93.91 | 87.89 | 82.77 | |
NOAA (DT) | direct | 64.38 | 60.87 | 42.55 | 33.25 |
average | 71.23 | 67.77 | 48.85 | 38.19 | |
optimal | 88.18 | 86.6 | 76.99 | 70.34 | |
SNPP (DB) | direct | 82.25 | 79.32 | 62.42 | 51.87 |
average | 86.61 | 83.74 | 67.08 | 55.74 | |
optimal | 95.25 | 94.28 | 88.4 | 83.37 | |
SNPP (DT) | direct | 58.36 | 55.3 | 39.61 | 31.56 |
average | 58.12 | 54.98 | 38.33 | 30.24 | |
optimal | 80.56 | 78.72 | 68.31 | 61.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Zhong, B.; Cai, H.; Wu, S.; Qiao, Y.; Wang, X.; Yang, A.; Wu, J.; Liu, Q.; Jiang, J.; et al. Improving AOD Algorithm Evaluation: A Spatial Matching Method for Minimizing Quality Control Bias. Remote Sens. 2025, 17, 1235. https://doi.org/10.3390/rs17071235
Du B, Zhong B, Cai H, Wu S, Qiao Y, Wang X, Yang A, Wu J, Liu Q, Jiang J, et al. Improving AOD Algorithm Evaluation: A Spatial Matching Method for Minimizing Quality Control Bias. Remote Sensing. 2025; 17(7):1235. https://doi.org/10.3390/rs17071235
Chicago/Turabian StyleDu, Bailin, Bo Zhong, He Cai, Shanlong Wu, Yang Qiao, Xiaoya Wang, Aixia Yang, Junjun Wu, Qinhuo Liu, Jinxiong Jiang, and et al. 2025. "Improving AOD Algorithm Evaluation: A Spatial Matching Method for Minimizing Quality Control Bias" Remote Sensing 17, no. 7: 1235. https://doi.org/10.3390/rs17071235
APA StyleDu, B., Zhong, B., Cai, H., Wu, S., Qiao, Y., Wang, X., Yang, A., Wu, J., Liu, Q., Jiang, J., & Zhang, H. (2025). Improving AOD Algorithm Evaluation: A Spatial Matching Method for Minimizing Quality Control Bias. Remote Sensing, 17(7), 1235. https://doi.org/10.3390/rs17071235