Soil Classification Maps for the Lower Tagus Valley Area, Portugal, Using Seismic, Geological, and Remote Sensing Data
Abstract
:1. Introduction
2. Geological Setting
3. Methods and Data Collected
3.1. Velocity/Depth Point Data
3.1.1. Seismic Refraction Profiles: Data Acquisition and Interpretation
3.1.2. Seismic Noise Measurements
3.1.3. Cross-Hole and Other Authors Datasets
3.2. Geology and Velocity Analysis
3.3. Point Data Generalization to Vs30 and Soil Classification Maps Using Geological and Remote Sensing Information
3.4. Point Data Generalization to Vs30 and Soil Classification Maps Using AI Techniques
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Profile | Geologycal Formation | Main Lithologies | Age | VS1 | VS2 | VS3 | D2 | D3 | VS30 | Soil | X | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TOJ1 | Alluvium | clays | Holocene | 99 | 408 | - | 16 | - | 153 | S1 | −87,573 | −91,681 |
VFX5 | Alluvium | clays | Holocene | 84 | 222 | 372 | 5 | 12 | 215 | C | −72,915 | −76,570 |
PM12 | Alluvium | clays | Holocene | 247 | 322 | - | 8 | - | 297 | C | −52,723 | −62,429 |
RS15 | Alluvium | clays | Holocene | 164 | 276 | - | 11 | - | 220 | C | −45,872 | −46,622 |
ARR23 | Alluvium | clays | Holocene | 172 | 665 | - | 15 | - | 274 | C | −23,513 | −24,320 |
BEN31 | Alluvium | clays | Holocene | 150 | 233 | - | 14 | - | 185 | C | −58,942 | −75,251 |
PAN46 | Alluvium | clays | Holocene | 121 | 250 | - | 10 | - | 186 | C | −68,898 | −91,074 |
PSE49 | Alluvium | clays | Holocene | 96 | 142 | - | 10 | - | 123 | S1 | −61,123 | −83,025 |
6_7 | Alluvium | sands, clays | Holocene | 80 | 505 | 419 | 3 | - | 326 | C | −34,953 | −30,130 |
VFX34 | Alluvium | clays | Holocene | 152 | 531 | - | 0.2 | - | 522 | B | −74,170 | −79,070 |
PS34 | Alluvium | clays | Holocene | 89 | 267 | - | 1 | - | 246 | C | −71,842 | −75,896 |
PS40 | Alluvium | clays | Holocene | 21 | 431 | - | 1 | - | 296 | C | −87,566 | −91,398 |
PS22 | Alluvium | clays | Holocene | 166 | 276 | - | 4 | - | 254 | C | −44,125 | −45,339 |
PS32 | Alluvium | clays | Holocene | 74 | 162 | 226 | 1 | 3 | 211 | C | −69,367 | −93,326 |
PS25 | Alluvium | sands, clays | Holocene | 302 | 442 | 818 | 3 | 27 | 445 | B | −53,758 | −62,624 |
PT_05 | Alluvium | sands, clays | Holocene | 80 | 233 | 504 | 4 | 14 | 245 | C | −79,821 | −118,132 |
PS19 | Alluvium | clays | Holocene | 63 | 375 | - | 1 | - | 301 | C | −65,329 | −75,895 |
PS3 | Alluvium | clays | Holocene | 228 | 656 | - | 5 | - | 488 | B | −23,071 | −24,450 |
A10 | Alluvium | clays | Holocene | 406 | 617 | - | 6 | - | 555 | B | −63,918 | −64,246 |
Si1 | Alluvium | clays | Holocene | 140 | 210 | - | 13 | 55 | 173 | D | −64,434 | −76,610 |
Si5 | Alluvium | clays | Holocene | 135 | 220 | - | 12 | 31 | 176 | D | −62,348 | −72,583 |
Si6 | Alluvium | clays | Holocene | 100 | 150 | 248 | 5 | 42 | 101 | D | −65,540 | −72,469 |
Si7 | Alluvium | clays | Holocene | 115 | 145 | 565 | 3 | 24 | 165 | D | −67,566 | −78,379 |
Si9 | Alluvium | clays | Holocene | 105 | 260 | - | 11 | 55 | 169 | D | −66,206 | −82,499 |
Si11 | Alluvium | clays | Holocene | 115 | 160 | - | 24 | 48 | 122 | S1 | −69,953 | −79,690 |
Si12 | Alluvium | clays | Holocene | 110 | 180 | - | 11 | 40 | 146 | D | −69,906 | −75,944 |
Si13 | Alluvium | clays | Holocene | 80 | 140 | - | 5 | 33 | 124 | D | −72,654 | −79,170 |
VFX_SB_2 | Alluvium | clays | Holocene | 82 | 98 | 489 | 2 | 20 | 131 | D | −73,397 | −78,288 |
VFX_SB_3 | Alluvium | clays | Holocene | 80 | 335 | 415 | 5 | 30 | 219 | C | −72,765 | −76,635 |
VFX_SB_4 | Alluvium | clays | Holocene | 80 | 217 | 463 | 5 | 30 | 169 | D | −70,182 | −79,264 |
VFX_SB_5 | Alluvium | clays | Holocene | 80 | 251 | 629 | 4 | 30 | 195 | C | −68,939 | −791,623 |
VFX_SB_6 | Alluvium | clays | Holocene | 80 | 273 | 375 | 3 | 30 | 220 | C | −65,739 | −79,413 |
4_2 | Alluvium | sands, clays | Holocene | 80 | 323 | 583 | 3 | 14 | 304 | CA | −78,767 | −87,496 |
4_3 | Alluvium | clays | Holocene | 80 | 274 | 1336 | 4 | 17 | 285 | E | −74,031 | −90,301 |
4_4 | Alluvium | sands, clays | Holocene | 80 | 262 | 865 | 4 | 30 | 196 | C | −72,428 | −91,397 |
LSB_CBL_22 | Alluvium | sands, clays | Holocene | 80 | 272 | 412 | 3 | 30 | 219 | C | −30,909 | −120,810 |
LSB_CBL_21 | Alluvium | sands, clays | Holocene | 80 | 396 | 454 | 5 | 28 | 240 | C | −34,128 | −119,881 |
Cross-232 | Alluvium | clays | Holocene | 173 | 195 | 200 | 6 | 22 | 191 | C | −63,788 | −77,259 |
Cross-304 | Alluvium | clays | Holocene | 181 | 184 | 211 | 11 | 19 | 192 | C | −63,001 | −77,626 |
SAM12 | Alluvium | sands, clays | Holocene | 319 | 444 | - | 6 | - | 410 | B | −60,128 | −79,509 |
TV1 | Alluvium | landfill, silty sand | Holocene | 169 | 202 | 525 | 7.5 | 24 | 221 | C | −87,406 | −105,694 |
TV2 | Alluvium | landfill, silty sand | Holocene | 167 | 207 | 525 | 3 | 22 | 240 | C | −87,265 | −106,136 |
TV3 | Alluvium | landfill, silty clay | Holocene | 172 | 177 | - | 7 | - | 176 | D | −87,500 | −105,469 |
LSB_CBL_5 | Alluvium | landfill, silty sand | Holocene | 80 | 396 | 454 | 5 | 28 | 240 | C | −83,978 | −102,438 |
LSB_CBL_3 | Alluvium | landfill, clay, silty sand | Holocene | 81 | 200 | 660 | 3 | 14 | 258 | C | −89,088 | −100,828 |
5_8 | Alluvium | sands, clays | Holocene | 81 | 377 | 509 | 5 | - | 240 | C | −57,801 | −65,608 |
5_9 | Alluvium | sands, clays | Holocene | 80 | 341 | 306 | 4 | - | 231 | C | −55,836 | −65,729 |
6_8 | Alluvium | sands, clays | Holocene | 80 | 218 | 724 | 5 | - | 166 | D | −32,328 | −31,837 |
RM_MG_10 | Alluvium | sands, clays | Holocene | 80 | 169 | 464 | 5.1 | 30 | 142 | D | −49,022 | −51,707 |
PT_9 | Alluvium | clays | Holocene | 80 | 263 | 445 | 3 | - | 209 | C | −73,326 | −108,966 |
PT_12 | Alluvium | sands, clays | Holocene | 80 | 491 | 496 | 4 | - | 286 | C | −66,105 | −102,764 |
PT_23 | Alluvium | sands, clays | Holocene | 81 | 233 | 333 | 5 | - | 178 | D | −61,117 | −72,191 |
PT_24 | Alluvium | sands, clays | Holocene | 80 | 288 | 577 | 3 | 15 | 288 | C | −58,438 | −70,956 |
PT_25 | Alluvium | sands, clays | Holocene | 80 | 264 | 469 | 6 | - | 178 | D | −56,934 | −68,673 |
PT_28 | Alluvium | sands, clays | Holocene | 80 | 225 | 385 | 4 | - | 180 | D | −50,191 | −62,128 |
PT_29 | Undif. sands and gravels | sands | Holocene | 80 | 314 | 441 | 4 | - | 229 | C | −49,244 | −59,555 |
PT_38 | Alluvium | sands, clays | Holocene | 80 | 260 | 298 | 3 | - | 210 | C | −32,554 | −38,687 |
PT_40 | Alluvium | sands, clays | Holocene | 81 | 433 | 555 | 4 | 24 | 280 | C | −29,448 | −33,165 |
PT_41 | Alluvium | sands, clays | Holocene | 80 | 282 | 468 | 6 | 22 | 204 | C | −27,293 | −31,022 |
PT_42 | Alluvium | sands, clays | Holocene | 80 | 252 | 670 | 3 | 16 | 266 | C | −26,119 | −28,057 |
PT_43 | Alluvium | sands, clays | Holocene | 81 | 345 | 531 | 4 | - | 239 | C | −25,405 | −25,299 |
PT_44 | Alluvium | sands, clays | Holocene | 82 | 531 | 519 | 5 | - | 278 | C | −23,842 | −24,283 |
PENE01 | Porto do Concelho Fm. | sands, clays | Holocene | 150 | 400 | 800 | 2 | 5 | 576 | B | −88,815 | −123,416 |
PS29 | Eolic sands | sands | Pleistocene | 388 | 550 | 569 | 3 | 8 | 540 | B | −61,969 | −82,427 |
PS17 | Undif. sands and gravels | sands, gravel | Pleistocene | 70 | 166 | 501 | 0.4 | 4 | 371 | B | −44,691 | −59,035 |
PS14 | Undif. sands and gravels | sands, gravel | Pleistocene | 98 | 230 | 864 | 2 | 8 | 429 | E | −36,167 | −44,710 |
VFX_SB_7 | Undifferentiated aeolian sands | sands | Pleistocene | 80 | 226 | 884 | 3 | - | 191 | C | −62,313 | −80,931 |
5_11 | Undif. Sands | sands | Pleistocene | 80 | 599 | 386 | 3 | - | 354 | C | −50,602 | −68,011 |
PT_14 | Undifferentiated aeolian sands | sands | Pleistocene | 81 | 519 | 260 | 4 | - | 315 | C | −65,068 | −96,826 |
PS20 | Undif. sands and gravels | sands, gravel | Pleistocene | 162 | 361 | 965 | 2 | 6 | 621 | E | −55,133 | −72,574 |
PV47 | Fluvial terrace deposits | sands | Pleistocene | 317 | 356 | - | 28 | - | 318 | C | −65,161 | −91,764 |
BEN3 | Fluvial terrace deposits | Landfild, sands, gravel | Pleistocene | 299 | 467 | - | 11 | - | 384 | B | −58,679 | −75,796 |
PS39 | Fluvial terrace deposits | sands, gravel | Pleistocene | 244 | 348 | 564 | 17 | 7 | 489 | B | −87,406 | −90,523 |
PS31 | Fluvial terrace deposits | sands, gravel | Pleistocene | 267 | 401 | 465 | 1 | 9 | 436 | B | −64,675 | −91,464 |
PS30 | Undif. sands and gravel | sands, gravel | Pleistocene | 278 | 376 | 441 | 1 | 11 | 413 | C | −60,893 | −86,278 |
FBE37 | Undif. sands and gravel | sands, gravel | Pleistocene | 139 | 406 | 861 | 1 | 5 | 636 | E | −45,209 | −58,990 |
SAM41 | Undif. sands and gravels | sands, gravel | Pleistocene | 146 | 246 | - | 15 | - | 184 | C | −55,851 | −73,324 |
TOJ2 | Fluvial terrace deposits | clay sandstones, gravel | Pleistocene | 350 | 513 | - | 9 | - | 447 | B | −87,613 | −90,940 |
ONO6 | Fluvial terrace deposits | sandstones | Pleistocene | 225 | 284 | 543 | 17 | 36 | 247 | C | −71,893 | −69,745 |
PO18 | Fluvial terrace deposits | sands, gravel | Pleistocene | 211 | 443 | - | 5 | - | 379 | B | −35,691 | −34,794 |
BO20 | Fluvial terrace deposits | sands, gravel | Pleistocene | 264 | 932 | 1516 | 3 | 22 | 836 | A | −34,478 | −27,086 |
EN21 | Fluvial terrace deposits | gravel, sands | Pleistocene | 385 | 1157 | - | 19 | - | 515 | B | −29,006 | −24,684 |
STE44 | Undif. sands and gravels | sands, gravel | Pleistocene | 509 | 643 | - | 20 | - | 549 | B | −51,845 | −88,816 |
BEL33 | Porto Concelho Fm. | sands, marls | Pleistocene | 284 | 372 | - | 8 | - | 344 | C | −87,292 | −117,867 |
PT_33 | Undif. sands and gravel | sands, gravels | Pleistocene | 80 | 288 | 350 | 5 | - | 200 | C | −42,256 | −50,274 |
PT_36 | Undif. sands and gravel | sands, gravels | Pleistocene | 80 | 225 | 466 | 3 | 16 | 235 | C | −36,952 | −42,628 |
FONT01 | Marco Furado Fm. | sands, gravels | Pleistocene | 292 | 524 | - | 3 | 485 | B | −82,966 | −124,152 | |
4_5 | Undifferentiated aeolian sands | sands | Pleistocene | 82 | 452 | 482 | 3 | - | 312 | C | −68,075 | −92,204 |
4_15 | Undifferentiated aeolian sands | sands | Pleistocene | 83 | 675 | 478 | 3.5 | 30 | 368 | B | −37,762 | −104,256 |
RM_MG_15 | Undif. sands | sands | Pleistocene | 80 | 374 | 360 | 3.3 | - | 266 | C | −35,100 | −57,322 |
PS18 | Undif. sands and gravels | sands, gravel | Pleistocene | 319 | 266 | - | 1 | - | 267 | B | −46,255 | −68,424 |
PS10 | Fluvial terrace deposits | sands, gravel | Pleistocene | 178 | 204 | 553 | 0.4 | 7 | 397 | B | −34,445 | −34,863 |
PS4 | Fluvial terrace deposits | gravel, sands | Pleistocene | 414 | 659 | - | 2 | - | 630 | A | −28,843 | −24,437 |
CHO17 | Fluvial terrace deposits | sandstones, gravel | Pleistocene | 693 | 833 | - | 28 | - | 700 | B | −40,170 | −37,676 |
6_22 | Fluvial terrace deposits | gravel, sands | Pleistocene | 83 | 290 | 489 | 4 | 17 | 258 | C | 67,55 | −49,705 |
CRA27 | Barracão Group | sandstones, gravel | Pliocene | 277 | 391 | - | 8 | - | 350 | C | −86,365 | −27,981 |
PERU01 | Santa Marta Fm. | sandstones, gravel, clays | Pliocene | 309 | 584 | - | 21 | 360 | C | −81,225 | −126,318 | |
PT_6 | Santa Marta Fm. | sandstones, gravels, clays | Pliocene | 81 | 291 | 475 | 3 | 20 | 249 | C | −79,935 | −115,079 |
ACT13 | Santa Marta Fm. | sandstones, gravels, clays | Pliocene | 398 | 402 | - | 5 | - | 401 | B | −72,031 | −101,451 |
VER2 | Santa Marta Fm. | sandstones, gravels, clays | Pliocene | 103 | 366 | 502 | 1 | 41 | 338 | C | −89,145 | −120,125 |
SET14 | Santa Marta Fm. | sandstones, gravels, clays | Pliocene | 219 | 350 | - | 9 | - | 298 | C | −64,059 | −125,143 |
PS33 | Santa Marta Fm. | sandstones, gravels, clays | Pliocene | 138 | 493 | 797 | 1 | 9 | 608 | B | −57,642 | −95,147 |
VFX_SB_24 | Ulme Fm. | sandstones, gravel | Pliocene | 81 | 160 | 667 | 5 | 27 | 147 | D | −22,381 | −93,612 |
VFX_SB_25 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 237 | 445 | 3 | 15 | 246 | C | −20,430 | −94,611 |
LSB_CBL_23 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 276 | 434 | 3 | 18 | 251 | C | −28,732 | −122,111 |
6_10 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 338 | 407 | 3 | 30 | 254 | C | −26,788 | −35,416 |
6_11 | Ulme Fm. | sandstones, gravel | Pliocene | 81 | 307 | 511 | 5 | 23 | 231 | C | −23,897 | −35,894 |
6_14 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 237 | 304 | 3 | 30 | 195 | C | −15,420 | −40,177 |
6_15 | Ulme Fm. | sandstones, gravel | Pliocene | 91 | 245 | 265 | 3 | 30 | 207 | C | −12,837 | −41,351 |
6_16 | Ulme Fm. | sandstones, gravel | Pliocene | 111 | 223 | 242 | 4 | 30 | 195 | C | −9989 | −42,589 |
6_17 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 264 | 343 | 3 | 30 | 215 | C | −7333 | −43,906 |
6_18 | Ulme Fm. | sandstones, gravel | Pliocene | 84 | 241 | 277 | 4 | 30 | 198 | C | −4734 | −45,447 |
RM_MG_21 | Ulme Fm. | sandstones, gravel | Pliocene | 80 | 252 | 419 | 4 | - | 196 | C | −18,271 | −63,866 |
PS24 | Ulme Fm | sandstones | Pliocene | 103 | 371 | 624 | 0.5 | 4 | 538 | A | −53,933 | −53,686 |
AZ10 | Ulme Fm. | sandstones, gravel | Pliocene | 269 | 492 | - | 12 | - | 372 | B | −63,918 | −64,246 |
CCP11 | Ulme Fm. | sandstones | Pliocene | 421 | 944 | - | 17 | - | 557 | B | −58,681 | −60,173 |
VCO13 | Ulme Fm. | sandstones | Pliocene | 459 | 671 | - | 1 | - | 661 | B | −53,262 | −53,547 |
PS26 | Ulme Fm | sandstones | Pliocene | 184 | 509 | 944 | 0.4 | 26 | 528 | B | −58,464 | −60,278 |
RM_MG_14 | Ulme Fm. | sandstones, gravel | Pliocene | 81 | 202 | 594 | 2.8 | - | 177 | D | −37,931 | −55,910 |
APL4 | Calcários da Musgueira Fm. | sandstones, limestones | Miocene | 445 | 846 | - | 2 | - | 791 | B | −86,163 | −93,577 |
PS41 | Calcários de Entrecampos Fm. | sandstones, limestones, gravel | Miocene | 259 | 513 | 774 | 1 | 8 | 658 | B | −86,941 | −93,505 |
APL3 | Calcários de Entrecampos Fm. | sandstones, limestones, gravel | Miocene | 227 | 580 | 717 | 3 | 48 | 509 | B | −87,204 | −93,565 |
PS49 | Calcários de Marvila Fm. | sandstones, limestones | Miocene | 681 | 1649 | - | 3 | - | 1437 | E | −83,186 | −91,803 |
PS48 | Areolas de Braço de Prata Fm. | sandstones, limestones | Miocene | 238 | 410 | 1048 | 2 | 6 | 735 | E | −83,259 | −93,345 |
PS47 | Areias de Vale de Chelas Fm. | sandstones, limestones | Miocene | 180 | 388 | 1292 | 1 | 5 | 831 | B | −84,333 | −91,644 |
LSB_CBL_4 | Areias com Placuna miocenica | sandstones | Miocene | 81 | 402 | 447 | 3 | 30 | 288 | C | −86,175 | −101,517 |
SCPC02 | Areias com Placuna miocenica | sandstones | Miocene | 115 | 275 | 450 | 3 | 16 | 287 | C | −94,372 | −109,796 |
SVF30 | Areias com Placuna miocenica | sandstones | Miocene | 316 | 524 | 713 | 6 | 43 | 336 | C | −86,436 | −105,429 |
SCPC03 | Areias da Quinta do Bacalhau | sandstones | Miocene | 140 | 270 | 515 | 3 | 9 | 355 | C | −94,655 | −109,987 |
BANT02 | Areias da Quinta do Bacalhau | sandstones | Miocene | 155 | 565 | - | 6 | 47 | 370 | C | −92,813 | −109,544 |
BANT01 | Argilas do Forno do Tijolo | clayey sandstones | Miocene | 195 | 1090 | - | 4 | 50 | 676 | B | −93,230 | −109,533 |
SCPC01 | Argilas do Forno do Tijolo | Clayey, sandstones | Miocene | 155 | 220 | 800 | 5 | 15 | 311 | E | −94,551 | −109,919 |
BANT03 | Argilas do Forno do Tijolo | clayey sandstones | Miocene | 146 | 407 | 1300 | 2 | 8 | 661 | B | −93,083 | −109,573 |
PS7 | Tomar Clays Fm. | claystones, sandstones w/carbonate crusts | Miocene | 158 | 349 | 398 | 1 | 5 | 370 | B | −391,648 | −28,212 |
ALC19 | Tomar Clays Fm. | claystones, sandstones w/carbonate crusts | Miocene | 240 | 355 | 561 | 5 | 29 | 335 | C | −38,615 | −27,319 |
VFX_SB_18 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones w/carbonate crusts | Miocene | 80 | 364 | 485 | 5 | 30 | 229 | C | −35,352 | −88,319 |
VFX_SB_20 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones w/carbonate crusts | Miocene | 82 | 297 | 488 | 3 | 30 | 235 | C | −32,409 | −89,880 |
6_20 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones | Miocene | 80 | 263 | 440 | 4 | 23 | 221 | C | 1116 | −48,081 |
RM_MG_17 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones | Miocene | 80 | 318 | 407 | 3.3 | - | 240 | C | −28,857 | −59,827 |
PS21 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones w/carbonate crusts | Miocene | 338 | 778 | 1227 | 2 | 10 | 905 | B | −52,007 | −89,089 |
PS9 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones wcarbonate crusts | Miocene | 249 | 821 | - | 2 | - | 689 | B | −43,486 | −38,493 |
PS8 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones wcarbonate crusts | Miocene | 178 | 456 | - | 3 | - | 402 | B | −42,967 | −37,537 |
6_4 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones | Miocene | 233 | 1349 | 982 | 4 | 30 | 291 | C | −43,183 | −26,549 |
6_5 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones wcarbonate crusts | Miocene | 80 | 218 | 724 | 5 | 30 | 166 | D | −40,539 | −27,905 |
6_6 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones wcarbonate crusts | Miocene | 80 | 381 | 464 | 3 | 30 | 274 | C | −37,946 | −29,245 |
RM_MG_5 | Undif. Alcoentre Fm. and Tomar Clays | sandstones, claystones wcarbonate crusts | Miocene | 80 | 396 | 454 | 5 | 28 | 248 | C | −63,217 | −46,231 |
4_19 | Undif. Alcoentre Fm. and Tomar Clays | claystones, sandstones wcarbonate crusts | Miocene | 80 | 467 | 739 | 3 | 21 | 339 | C | −25,872 | −108,768 |
VF16 | Undif. Alcoentre Fm. and Tomar Clays | sandstones, claystones wcarbonate crusts | Miocene | 171 | 406 | 697 | 2 | 22 | 415 | B | −43,886 | −38,062 |
SAN26 | Alcoentre Fm. | sandstones, claystones | Miocene | 284 | 449 | - | 7 | - | 392 | B | −48,236 | −46,973 |
CAR7 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 261 | 405 | 805 | 2 | 24 | 429 | B | −74,515 | −69,918 |
CHE8 | Alcoentre Fm. | sandstones, claystones | Miocene | 236 | 305 | - | 6 | - | 289 | C | −73,562 | −65,709 |
AZ9 | Alcoentre Fm. | claystones, sandstones | Miocene | 400 | 574 | - | 6 | - | 526 | B | −62,989 | −63,604 |
5_6 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 80 | 274 | 404 | 3 | 30 | 215 | C | −64,276 | −62,414 |
SAN14 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 148 | 318 | 512 | 1 | 38 | 303 | C | −47,361 | −46,486 |
PS28 | Alcoentre Fm. | sanstones, claystones | Miocene | 265 | 296 | 480 | 2 | 7 | 417 | A | −73,533 | −65,477 |
PS27 | Alcoentre Fm. | claystones, sanstones wcarbonate crusts | Miocene | 291 | 1069 | - | 2 | - | 921 | C | −63,425 | −63,513 |
PS23 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 250 | 283 | - | 1 | - | 282 | B | −47,482 | −46,502 |
PS42 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 136 | 332 | 654 | 1 | 9 | 477 | A | −74,520 | −69,856 |
RM_MG_3 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 80 | 227 | 479 | 3 | 14 | 251 | C | −68,930 | −43,533 |
RM_MG_4 | Alcoentre Fm. | sandstones, claystones wcarbonate crusts | Miocene | 80 | 206 | 589 | 4 | 12 | 251 | C | −65,687 | −44,872 |
LSB_CBL_2 | Benfica Fm. | claystones, sandstones, gravels, wcarbonate crusts | Paleogene | 80 | 526 | 575 | 4 | 30 | 302 | C | −91,942 | −99,496 |
4_1 | Benfica Fm. | claystones, sandstones, gravels, wcarbonate crusts | Paleogene | 80 | 221 | 546 | 3 | 12 | 264 | C | −81,198 | −87,523 |
5_26 | Vale do Guizo Fm. | claystones, sandstones, gravels, wcarbonate crusts | Paleogene | 80 | 221 | 408 | 4 | 29 | 184 | C | −6031 | −85,302 |
4_20 | Vale do Guizo Fm. | claystones, sandstones, gravels, wcarbonate crusts | Paleogene | 80 | 365 | 550 | 3 | 30 | 267 | C | −23,226 | −109,786 |
5_2 | Monsanto Fm. | claystones, sandstones, gravels, wcarbonate crusts | Paleogene | 80 | 286 | 474 | 3 | 30 | 230 | C | −75,444 | −57,829 |
CNX29 | Volcanic Complex of Lisbon | weathered basalt | Cretaceous | 186 | 500 | 2096 | 2 | 10 | 781 | B | −95,943 | −104,700 |
PS35 | Volcanic Complex of Lisbon | weathered basalt | Cretaceous | 167 | 620 | 1894 | 1 | 8 | 1039 | A | −91,538 | −87,173 |
LSB_CBL_1 | Volcanic Complex of Lisbon | weathered basalt | Cretaceous | 80 | 448 | 385 | 3 | 30 | 307 | C | −94,921 | −98,374 |
RM_MG_1 | Almargem Fm. | sandstones, mudstones | Cretaceous | 80 | 268 | 335 | 3 | 25 | 221 | C | −74,345 | −41,317 |
PS45 | Serreira Fm. | sandstones, clastones | Cretaceous | 271 | 1077 | - | 1 | - | 998 | A | −91,372 | −83,622 |
PS43 | Abadia | claystones, sandstones | Upper Jurassic | 164 | 536 | - | 7 | - | 345 | C | −74,113 | −74,071 |
PS1 | Gneisso-migmatitic Fm. | gneisses | Pre-Cambrian | 75 | 1240 | - | 1 | - | 720 | B | −72,608 | −12,220 |
References
- Justo, J.L.; Salwa, C. The 1531 Lisbon earthquake. Bull. Seismol. Soc. Am. 1998, 88, 319–328. [Google Scholar] [CrossRef]
- Grandin, R.; Borges, J.F.; Bezzeghoud, M.; Caldeira, B.; Carrilho, F. Simulations of strong ground motion in SW Iberia for the 1969 February 28 (MS = 8.0) and the 1755 November 1 (M* 8.5) earthquakes–II. Strong ground motion simulations. Geophys. J. Int. 2007, 171, 807–822. [Google Scholar] [CrossRef]
- Besana-Ostman, G.M.; Vilanova, S.P.; Nemser, E.S.; Falcão-Flor, A.; Heleno, S.; Ferreira, H.; Fonseca, J.D. Large Holocene Earthquakes in the Lower Tagus Valley Fault Zone, Central Portugal. Seismol. Res. Lett. 2012, 83, 67–76. [Google Scholar] [CrossRef]
- Gutscher, M.A.; Dominguez, S.; Westbrook, G.K.; Le Roy, P.; Rosas, F.; Duarte, J.C.; Terrinha, P.; Miranda, J.M.; Graindorge, D.; Gailler, A.; et al. The Gibraltar subduction: A decade of new geophysical data. Tectonophysics 2012, 574–575, 72–91. [Google Scholar] [CrossRef]
- Cabral, J.; Moniz, C.; Batló, J.; Figueiredo, P.; Carvalho, J.; Matias, L.; Teves-Costa, P.; Dias, R.; Simão, N. The 1909 Benavente (Portugal) earthquake: Search for the source. Nat. Hazards 2013, 69, 1211–1227. [Google Scholar] [CrossRef]
- Baptista, M.A.; Miranda, J.M. Evaluation of the 1755 Earthquake source Using Tsunami Modeling. In The 1755 Lisbon Earthquake: Revisited; Mendes Victor, L., Sousa Oliveira, C., Azevedo, J., Ribeiro, A., Eds.; Springer: New York, NY, USA, 2009; Volume 1, pp. 425–432. [Google Scholar]
- Buforn, E.; Udías, A.; Colombás, M.A. Seismicity source mechanisms and tectonics of the Azores-Gibraltar plate boundary. Tectonophysics 1988, 152, 89–118. [Google Scholar] [CrossRef]
- Carvalho, J.; Cabral, J.; Gonçalves, R.; Torres, L.; Mendes-Victor, L. Geophysical Methods Applied to Fault Characterization and Earthquake Potential Assessment in the Lower Tagus Valley, Portugal. Tectonophysics 2006, 418, 277–297. [Google Scholar]
- Vilanova, S.P.; Nemser, E.; Besana-Ostman, G.M.; Bezzeghoud, M.; Borges, J.F.; Brum da Silveira, A.; Cabral, J.; Carvalho, J.; Cunha, P.P.; Dias, R.P.; et al. Incorporating Descriptive Metadata into Seismic Source Zone Models for Seismic Hazard Assessment: A case study of the Azores-West Iberian region. Bull. Seismol. Soc. Am. 2014, 104, 1212–1229. [Google Scholar] [CrossRef]
- Vilanova, S.P.; Narciso, J.; Carvalho, J.P.; Lopes, I.; Quinta-Ferreira, M.; Pinto, C.C.; Moura, R.; Borges, J.; Nemser, E.S. Developing a Geologically Based VS30 Site-Condition Model for Portugal: Methodology and Assessment of the Performance of Proxies. Bull. Seismol. Soc. Am. 2018, 108, 322–337. [Google Scholar] [CrossRef]
- Silva, V.; Crowley, H.; Varum, H.; Pinho, R. Seismic risk assessment for mainland Portugal. Bulletin of Earthquake Engineering 2015, 13, 429–457. [Google Scholar] [CrossRef]
- Teves-Costa, P.; Rodrigues, I.; Torres, R.J.G.; Carvalho, J.; Almeida, I.M.; Borges, J.F. Vs30 estimation using ambient vibrations and seismic refraction experiments–Application to the Lower Tagus Valley (Portugal). In Proceedings of the Joint Assembly IAHS-IAPSO-IAPSEI, Gotemburg, Sweden, 22–26 July 2013. [Google Scholar]
- Carvalho, J.; Dias, R.; Ghose, R.; Borges, J.; Narciso, J.; Pinto, C.; Leote, J. Near surface characterization of the Lisbon and Lower Tagus Valley Area, Portugal for seismic hazard assessment: VS30 and soil classification maps. Bull. Seismol. Soc. Am. 2018, 108, 2854–2876. [Google Scholar] [CrossRef]
- EN 1998-1; CEN Eurocode 8—Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Borcherdt, R.D. Estimates of site-dependent response spectra for design (methodology and justification). Earth. Spectra 1994, 10, 617–653. [Google Scholar] [CrossRef]
- Penelis, G.G. Eurocode 8: Characterization of Seismic Action, Design Spectra, Future Trends. In Proceedings of the SERINA-Seismic Risk: An Integrated Seismological, Geotechnical and Structural Approach, Thessaloniki, Greece, 21–27 September 1997; pp. 479–492. [Google Scholar]
- Pitilakis, K.; Riga, E.; Anastasiadis, A. Design spectra and amplification factors for Eurocode 8. Bull. Earthq. Eng. 2012, 10, 1377–1400. [Google Scholar] [CrossRef]
- Pitilakis, K.; Riga, E.; Anastasiadis, A. New Design spectra in Eurocode 8 and Preliminary Application to the Seismic Risk of Thessaloniki, Greece. In Perspectives on Earthquake Geotechnical Engineering. Geotechnical, Geological and Earthquake Engineering; Ansal, A., Sakr, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 37, pp. 45–91. [Google Scholar] [CrossRef]
- Gouveia, F.; Viana da Fonseca, A.; Carrilho Gomes, R.; Teves-Costa, P. Deeper Vs profile constraining the dispersion curve with the ellipticity curve: A case study in Lower Tagus Valley, Portugal. Soil Dyn. Earthq. Eng. 2018, 109, 188–198. [Google Scholar] [CrossRef]
- Borges, J.F.; Bezzeghoud, M.; Caldeira, B.; Carvalho, J. Ground-motion simulation in the Lower Tagus Valley Basin. Pure Appl. Geophys. 2015, 172, 2411–2420. [Google Scholar] [CrossRef]
- Borges, J.F.; Silva, H.G.; Torres, R.J.G.; Caldeira, B.; Bezzeghoud, M.; Furtado, J.A.; Carvalho, J. Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal. J. Seismol. 2015, 20, 875–887. [Google Scholar] [CrossRef]
- Kanlı, A.I.; Tildy, P.; Prónay, Z.; Pınar, A.; Hermann, L. Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophys. J. Int. 2006, 165, 223–235. [Google Scholar] [CrossRef]
- Sucuoğlu, H.; Akkar, S. Basic Earthquake Engineering: From Seismology to Analysis and Design; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Ghose, R.; Goudswaard, J. Integrating S-wave seismic reflection data and 239 cone-penetration-test data using a multiangle multiscale approach. Geophysics 2004, 69, 440–459. [Google Scholar] [CrossRef]
- Ghose, R. A microelectromechanical system digital 3C array seismic cone penetrometer. Geophysics 2012, 77, WA99–WA107. [Google Scholar] [CrossRef]
- Zhubayev, A.; Ghose, R. Contrasting behavior between dispersive seismic velocity and attenuation: Advantages in subsoil characterization. J. Acoust. Soc. Am. 2012, 131, EL170–EL176. [Google Scholar] [CrossRef]
- Palmer, D. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 1981, 46, 1508–1518. [Google Scholar] [CrossRef]
- Dobrin, M.B.; Savitt, C.H. Introduction to Geophysical Prospecting; McGraw-Hill: New York, NY, USA, 1989; pp. 1–890. [Google Scholar]
- Palmer, D.; Shadlow, J. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Explor. Geophys. 2008, 39, 139–147. [Google Scholar] [CrossRef]
- Teves-Costa, P.; Almeida, I.M.; Rodrigues, I.; Matildes, R.; Pinto, C. Geotechnical characterization and seismic response of shallow geological formations in downtown Lisbon. Ann. Geophys. 2014, 57, S0436. [Google Scholar]
- Nakamura, Y. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Q. Rep. Railw. Tech. Res. Inst. (RTRI) 1989, 30, 25–33. [Google Scholar]
- LNEG. Geological Map of Portugal Scale 1: 1 000 000; Laboratório Nacional de Energia e Geologia: Alfragide, Portugal, 2010.
- Carvalho, J.; Pinto, C.; Rabeh, T.; Dias, R.; Torres, L.; Borges, J.; Torres, R.; Duarte, H. Tectonic Evolution of an Intraplate Basin: The Lower Tagus Cenozoic Basin, Portugal. Basin Res. 2017, 9, 636–657. [Google Scholar] [CrossRef]
- Pais, J.; Cunha, P.P.; Pereira, D.; Legoinha, P.; Dias, R.; Moura, D.; Silveira, A.B.; Kullberg, J.C.; González-Delgado, J.A. The Paleogene and Neogene of Western Iberia (Portugal): A Cenozoic Record in the European Atlantic Domain, 1st ed.; Springer: Cham, Switzerland, 2012; pp. 1–156. [Google Scholar]
- Moony, H.H. Handbook of Engineering Geophysics, 1: Seismic; Bison Instruments, Inc.: Chanhassen, MN, USA, 1980. [Google Scholar]
- Rafek, A.-G. Depth of penetration of geophysical exploration methods as applied in shallow geological engineering investigations. Bull. Seismol. Soc. Malays. 1989, 23, 21–28. [Google Scholar] [CrossRef]
- Rucker, M.L. Applying the Seismic Refraction Technique to Exploration for Transportation Facilities. In Geophysics 2000, Proceedings of the First International Conference on the Application of Geophysical Methodologies to Transportation Facilities and Infrastructure, St. Louis, MO, USA, 11–15 December 2000; AMEC Earth & Environmental, Inc.: Phoenix, AZ, USA, 2000; pp. 1–3. [Google Scholar]
- Hunt, R.E. Geotechnical Investigation Methods: A Field Guide for Geotechnical Engineers; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2006. [Google Scholar]
- Knödel, K.; Lange, G.; Voigt, H.J. Environmental Geology: Handbook of Field Methods and Case Studies; Springer: Berlin, Germany, 2007. [Google Scholar]
- Maunde, A.; Bassey, N.E. Seismic Refraction Investigation of Fracture Zones and Bedrock Configuration for Geohydrologic and Geotechnical Studies in part of Nigeria’s Capital City, Abuja. J. Earth Sci. Geotech. Eng. 2017, 7, 91–102. [Google Scholar]
- Herak, M. ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Comput. Geosci. 2008, 34, 1514–1526. [Google Scholar] [CrossRef]
- Gardner, G.H.F.; Gardner, L.W.; Gregory, A.R. Formation velocity and density—The diagnostic basic for stratigraphic trap. Geophysics 1974, 39, 770–780. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Essien, U.E.; Akankpo, A.O.; Igboekwe, M.U. Poisson’s Ratio of Surface Soils and Shallow Sediments Determined from Seismic Compressional and Shear Wave Velocities. Int. J. Geosci. 2014, 5, 1540–1546. [Google Scholar] [CrossRef]
- Uyanik, O. Compressional and shear-wave velocity measurements in unconsolidated top-soil and comparison of the results. Int. J. Phys. Sci. 2010, 5, 1034–1039. [Google Scholar]
- Salem, H.S. The compressional to shear-wave velocity ratio for surface soils and shallow sediments. Eur. J. Environ. Eng. Geophys. 2000, 5, 3–14. [Google Scholar]
- Lankston, R.W. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 1990, 54, 1535–1542. [Google Scholar] [CrossRef]
- Fumal, T.E.; Tinsley, J.C. Mapping shear wave velocities of near-surface geological materials. In Predicting Aerial Limits of Earthquake Induced Landsliding; In Evaluation of Earthquake Hazards in the Los Angeles Region—An Earth Science Perspective; US Geological Survey Paper 1360; Ziony, J.I., Ed.; USGS: Reston, WV, USA, 1985; pp. 127–150. [Google Scholar]
- Kalkan, E.; Wills, C.J.; Branum, D.M. Seismic Hazard Mapping of California Considering Site Effects. Earth. Spectra 2010, 26, 1039–1055. [Google Scholar] [CrossRef]
- Motazedian, D.; Hunter, J.A.; Pugin, A.; Crow, H. Development of a Vs30 (NEHRP) map for the city of Ottawa, Ontario, Canada. Can. Geotech. J. 2011, 48, 458–472. [Google Scholar] [CrossRef]
- Wills, C.J.; Gutierrez, C.I.; Perez, F.G.; Branum, D.M. A Next Generation Vs30 Map for California Based on Geology and Topography. Bull. Seismol. Soc. Am. 2015, 105, 3083–3091. [Google Scholar] [CrossRef]
- Wills, C.; Petersen, M.; Bryant, W.; Reichle, M.; Saucedo, G.; Tan, S.; Taylor, G.; Treiman, J.A. Site-conditions map for California based on geology and shear-wave velocity. Bull. Seismol. Soc. Am. 2000, 90, S187–S208. [Google Scholar] [CrossRef]
- Wald, D.J.; Allen, T.I. Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bull. Seismol. Soc. Am. 2007, 97, 1379–1395. [Google Scholar] [CrossRef]
- Gupta, R.; Tiwari, R.; Saini, V.; Srivastava, N. A Simplified Approach for Interpreting Principal Component Images. Adv. Remote Sens. 2013, 2, 111–119. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Teves-Costa, P.; Batlló, J. The 23 April 1909 Benavente earthquake (Portugal): Macroseismic field revision. J. Seismol. 2011, 15, 59–70. [Google Scholar] [CrossRef]
- Cabral, J.; Ribeiro, P.; Figueiredo, P.; Pimentel, N.; Martins, A. The Azambuja fault: An active structure located in an intraplate basin with significant seismicity (Lower Tagus Valley, Portugal). J. Seismol. 2004, 8, 347–362. [Google Scholar] [CrossRef]
- Mendes-Victor, L.A.; Oliveira, C.S.; Azevedo, J.; Ribeiro, A. (Eds.) The 1755 Lisbon Earthquake: Revisited; Springer: Cham, Switzerland, 2009. [Google Scholar]
- Mendes-Victor, L.A.; Oliveira, C.S.; Pais, I.; Teves-Costa, P. Earthquake Damage Scenarios in Lisbon for Disaster Preparedness. In Issues in Urban Risk; NATO ASI Series, 271; Tucker, B.E., Erdik, M., Hwang, C.N., Eds.; Springer: Cham, Switzerland, 1994; pp. 265–289. [Google Scholar]
- Johnston, A.C.; Kanter, L.R. Earthquakes in stable continental crust. Sci. Am. 1990, 262, 68–75. [Google Scholar] [CrossRef]
- Perrin, N.D.; Heron, D.; Kaiser, A.; Van Houtte, C. VS 30 and NZS 1170.5 site class maps of New Zealand. In Proceedings of the NZSEE Conference, Rotorua, New Zealand, 10–12 April 2015. Paper 0-07. [Google Scholar]
- Matsuoka, M.; Wakamatsu, K.; Fujimoto, K.; Saburoh, M. Average Shear-wave Velocity Mapping Using Japan Engineering Geomorphologic Classification Map. J. Struct. Mech. Earthq. Eng. 2005, 794, 239–251. [Google Scholar] [CrossRef]
- Wills, C.J.; Clahan, K.B. Developing a map of geologically defined site-condition categories for California. Bull. Seismol. Soc. Am. 2006, 96, 1483–1501. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu¸t, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Gögen, B.; Karimzadeh, S.; Lourenço, P.B. Probabilistic Seismic Hazard Assessment of Lisbon (Portugal). GeoHazards 2024, 5, 932–970. [Google Scholar] [CrossRef]
- Teves-Costa, P.; Batlló, J.; Matias, L.; Catita, C.; Jiménez, M.J.; García-Fernández, M. Maximum intensity maps (MIM) for Portugal mainland. J. Seismol. 2019, 23, 417–440. [Google Scholar] [CrossRef]
- Quintero, J.; Gomes, R.C.; Rios, S.; Ferreira, C.; Viana da Fonseca, A. Liquefaction assessment based on numerical simulations and simplified methods: A deep soil deposit case study in the Greater Lisbon. Soil Dyn. Earthq. Eng. 2023, 169, 107866. [Google Scholar] [CrossRef]
- Geyin, M.; Maurer, B.W. U.S. National VS30 Models and Maps Informed by Remote Sensing and Machine Learning. Seismol. Res. Lett. 2023, 94, 1467–1477. [Google Scholar] [CrossRef]
Geological Formation | Main Lithologies | Age | Average Vs30 (m/s) | Std Dev (m/s) | N Points |
---|---|---|---|---|---|
Alluvium | clays | Holocene | 287 | 259 | 34 |
Alluvium | sands, gravels | Holocene | 313 | 259 | 32 |
Undif. sands and gravels | sands, gravels | Pleistocene | 454 | 193 | 27 |
Fluvial terrace deposits | sands, gravel | Pleistocene | 452 | 151 | 14 |
Porto Concelho Fm. | sands, marls | Pleistocene | 282 | - | 1 |
Ulme Fm. | sandstones, gravels | Pliocene | 386 | 124 | 25 |
Lisbon, Miocene: Banco Real Fm., Musgueira Limestones, etc., Undif. Alcoentre Fm. and Tomar clays | limestones, sandstones, claystones often w/carbonate crusts | Miocene | 469 | 330 | 25 |
Undif. Alcoentre Fm. and Tomar Clays, Lisbon Miocene: Areias da Quinta do Bacalhau, Argilas Forno do Tijoplo, etc. | sandstones, claystones, clayey sandstones | Miocene | 435 | 179 | 16 |
Benfica Fm., Vale do Guizo Fm., Monsanto Fm. | claystones, sandstones, gravels, w/carbonate crusts | Paleogene | 526 | 262 | 5 |
Lisbon Volcanic Complex | weathered basalts | Cretaceous | 523 | 81 | 3 |
Almargem Fm. | sandstones, mudstones | Cretaceous | 268 | - | 1 |
Freixial, Sobral e Arranhó | sandstones, limestones | Jurassic | 1077 | - | 1 |
Abadia Fm. | claystones, sandstones | Jurassic | 536 | - | 1 |
Basement | gneisses | Precambrian | 1240 | - | 1 |
Ground Type | Description of Stratigraphic Profile | VS30 (m/s) | NSPT (Blows/30 cm) |
---|---|---|---|
A | Rock or other rock-like geologic formation, including at most 5 m of weaker material at the surface | >800 m/s | - |
B | Deposits of very dense sand, gravel or very stiff clay, at least several tens of meters in thickness, characterized by a gradual increase in mechanical properties with depth | 360–800 | >50 |
C | Deposits of dense or medium-dense sand, gravel or very stiff clay, with thickness from several tens to many hundreds of meters | 180–360 | 15–50 |
D | Deposits of loose-to-medium cohesionless soil (with or without soft cohesive layers), or of predominantly soft-to-firm cohesive soil | <180 | <15 |
E | Soil profile consisting of a surface alluvium layer with values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with VS > 800 m/s | ||
S1 | Deposits containing a layer, which is at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high-water content | <100 (indicative) | - |
S2 | Deposits of liquefiable soils, made of sensitive clays, or any other soil profile not included in types A–E or S1 |
Geological Formation | Main Lithology | Age | VS30 (m/s) | Soil Class |
---|---|---|---|---|
Monchique Igneous Complex | Sienites | Cretaceous | 657 | B |
J3-4 | Marls and limestones | Upper Jurassic | 749 | B |
J3 | Marls | Upper Jurassic | 1002 | A |
J1 | Dolomites | Lower Jurassic | 1360 | A |
Silves Fm. | Sandstones | Triassic | 999 | A |
Beja Igneous Complex | Gabbro | Carboniferous | 839 | A |
Mértola Fm. | Turbidites and conglomerates | Carboniferous | 1436 | A |
Mira Fm. | Turbidites | Carboniferous | 1582 | A |
Brejeira Fm. | Turbidites | Carboniferous | 885 | A |
Brejeira Fm. | Turbidites | Carboniferous | 489 | B |
Mértola Fm. | Turbidites | Carboniferous | 1375 | A |
Mértola Fm. | Turbidites | Carboniferous | 1236 | A |
Terena Fm. | Turbidites | Devonian | 1882 | A |
Paragneisses | Paragneisses | Cambrian-Ordovician | 784 | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, J.; Dias, R.; Borges, J.; Quental, L.; Caldeira, B. Soil Classification Maps for the Lower Tagus Valley Area, Portugal, Using Seismic, Geological, and Remote Sensing Data. Remote Sens. 2025, 17, 1376. https://doi.org/10.3390/rs17081376
Carvalho J, Dias R, Borges J, Quental L, Caldeira B. Soil Classification Maps for the Lower Tagus Valley Area, Portugal, Using Seismic, Geological, and Remote Sensing Data. Remote Sensing. 2025; 17(8):1376. https://doi.org/10.3390/rs17081376
Chicago/Turabian StyleCarvalho, João, Ruben Dias, José Borges, Lídia Quental, and Bento Caldeira. 2025. "Soil Classification Maps for the Lower Tagus Valley Area, Portugal, Using Seismic, Geological, and Remote Sensing Data" Remote Sensing 17, no. 8: 1376. https://doi.org/10.3390/rs17081376
APA StyleCarvalho, J., Dias, R., Borges, J., Quental, L., & Caldeira, B. (2025). Soil Classification Maps for the Lower Tagus Valley Area, Portugal, Using Seismic, Geological, and Remote Sensing Data. Remote Sensing, 17(8), 1376. https://doi.org/10.3390/rs17081376