Figure 1.
DACNet network structure flow chart.
Figure 1.
DACNet network structure flow chart.
Figure 2.
PCA workflow diagram.
Figure 2.
PCA workflow diagram.
Figure 3.
SENet workflow diagram.
Figure 3.
SENet workflow diagram.
Figure 4.
Workflow diagram of the spatial attention mechanism.
Figure 4.
Workflow diagram of the spatial attention mechanism.
Figure 5.
Experimental overview. (a) Experimental site. (b) Experimental instruments.
Figure 5.
Experimental overview. (a) Experimental site. (b) Experimental instruments.
Figure 6.
Layout of targets against different ground backgrounds. (a) Shrubs, grassland, and bare soil background. (b) Sandy, cement, grassland, and bare soil background. (c) Grassland and camouflage net background. (d) Forest and grassland background.
Figure 6.
Layout of targets against different ground backgrounds. (a) Shrubs, grassland, and bare soil background. (b) Sandy, cement, grassland, and bare soil background. (c) Grassland and camouflage net background. (d) Forest and grassland background.
Figure 7.
GCL dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 7.
GCL dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 8.
SSCL dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 8.
SSCL dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 9.
CW dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 9.
CW dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 10.
LC dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 10.
LC dataset. (a) Cube plot of hyperspectral imaging data. (b) Truth plot.
Figure 11.
Classification and recognition results of GCL dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 11.
Classification and recognition results of GCL dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 12.
Classification and recognition results of SSCL dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 12.
Classification and recognition results of SSCL dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 13.
Classification and recognition results of CW dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 13.
Classification and recognition results of CW dataset. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 14.
LC dataset classification and recognition results. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 14.
LC dataset classification and recognition results. (a) Grayscale image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 15.
Ground cover and truth maps of IP, PU, and SA datasets. (a) surface features of IP. (b) Ground Truth of IP. (c) surface features of PU. (d) Ground Truth of PU. (e) surface features of SA. (f) Ground Truth of SA.
Figure 15.
Ground cover and truth maps of IP, PU, and SA datasets. (a) surface features of IP. (b) Ground Truth of IP. (c) surface features of PU. (d) Ground Truth of PU. (e) surface features of SA. (f) Ground Truth of SA.
Figure 16.
Classification and recognition results of IP dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 16.
Classification and recognition results of IP dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 17.
Classification and recognition results of PU dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 17.
Classification and recognition results of PU dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 18.
Classification and recognition results of SA dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Figure 18.
Classification and recognition results of SA dataset. (a) Surface features image. (b) True value image. (c) 1DCNN. (d) TS2DCNN. (e) 3DCNN. (f) HybridSN. (g) ResNet. (h) DACNet.
Table 1.
DACNet network structure parameters.
Table 1.
DACNet network structure parameters.
Branch | Layer | Kernel_Size | Stride | Padding | Output Shape |
---|
Spectral attention mechanism and spectral dimension feature extraction | SpectralAttention | — | — | — | [30,13,13] |
Squeeze | — | — | — | [1,30] |
Conv1d | 3 | 2 | 1 | [16,15] |
Relu | — | — | — | [16,15] |
Conv1d | 3 | 2 | 1 | [32,8] |
Relu | — | — | — | [32,8] |
Conv1d | 3 | 2 | 1 | [64,4] |
Relu | — | — | — | [64,4] |
Conv1d | 3 | 2 | 1 | [128,2] |
Relu | — | — | — | [128,2] |
Conv1d | Spectral kernel | 1 | 0 | [7,1] |
Spatial attention mechanism and spatial dimension feature extraction | SpatialAttention | — | — | — | [30,13,13] |
Conv2d | (3,3) | (1,1) | 0 | [16,11,11] |
Relu | — | — | — | [16,11,11] |
Conv2d | (3,3) | (1,1) | 0 | [32,9,9] |
Relu | — | — | — | [32,9,9] |
Conv2d | (3,3) | (1,1) | 0 | [64,7,7] |
Relu | — | — | — | [64,7,7] |
Conv2d | (3,3) | (1,1) | 0 | [128,5,5] |
Relu | — | — | — | [128,5,5] |
Conv2d | Spatial kernel | (1,1) | 0 | [7,1,1] |
Fusion and aggregation of spatial−spectral features | Linear | — | — | — | 7 |
Total params | 158,236 |
Table 2.
Categories and corresponding sample sizes in the GCL dataset.
Table 2.
Categories and corresponding sample sizes in the GCL dataset.
No. | Class Names | Number of Samples |
---|
1 | Grass | 1296 |
2 | Shrub | 1969 |
3 | Target Scaled Model | 382 |
4 | Cement Floor | 208 |
| Total | 3855 |
Table 3.
Categories and corresponding sample sizes in the SSCL dataset.
Table 3.
Categories and corresponding sample sizes in the SSCL dataset.
No. | Classes Name | Number of Samples |
---|
1 | Artificial Cement | 759 |
2 | Grass | 666 |
3 | Sandy Land | 1469 |
4 | Shrub | 324 |
5 | Target Scaled Model | 238 |
6 | Marble | 720 |
7 | Bare Soil | 261 |
| Total | 4437 |
Table 4.
Categories and corresponding sample sizes in the CW dataset.
Table 4.
Categories and corresponding sample sizes in the CW dataset.
No. | Classes Name | Number of Samples |
---|
1 | Target Scaled Model | 217 |
2 | Camouflage Net | 522 |
3 | Grass 1 | 1014 |
4 | Grass 2 | 1007 |
| Total | 2760 |
Table 5.
Category types and corresponding sample sizes in the LC dataset.
Table 5.
Category types and corresponding sample sizes in the LC dataset.
No. | Classes Name | Number of Samples |
---|
1 | Target Scaled Model | 189 |
2 | Bare Soil | 755 |
3 | Grass | 345 |
4 | Shrub | 653 |
5 | Trunk | 275 |
| Total | 2217 |
Table 6.
Comparison of classification results of various networks on GCL dataset.
Table 6.
Comparison of classification results of various networks on GCL dataset.
No | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
1 | 85.00 | 88.00 | 92.00 | 99.00 | 89.00 | 100.00 |
2 | 84.00 | 87.00 | 96.00 | 99.00 | 86.00 | 100.00 |
3 | 100.00 | 100.00 | 100.00 | 96.00 | 100.00 | 100.00 |
4 | 99.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
OA | 86.51 | 89.32 | 95.18 | 99.01 | 88.91 | 99.94 |
AA | 87.14 | 91.27 | 94.69 | 99.21 | 92.05 | 99.96 |
Kappa | 77.37 | 86.88 | 92.09 | 98.39 | 81.63 | 99.91 |
Table 7.
Comparison of classification results of various networks on the SSCL dataset.
Table 7.
Comparison of classification results of various networks on the SSCL dataset.
No | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
1 | 0.00 | 0.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | 63.00 | 72.00 | 97.00 | 97.00 | 97.00 | 99.00 |
3 | 42.00 | 67.00 | 95.00 | 96.00 | 97.00 | 100.00 |
4 | 27.00 | 76.00 | 97.00 | 90.00 | 98.00 | 100.00 |
5 | 72.00 | 83.00 | 94.00 | 99.00 | 90.00 | 99.00 |
6 | 65.00 | 70.00 | 97.00 | 99.00 | 97.00 | 100.00 |
7 | 27.00 | 45.00 | 99.00 | 99.00 | 98.00 | 100.00 |
OA | 61.87 | 77.26 | 95.79 | 97.92 | 94.59 | 99.52 |
AA | 41.84 | 80.03 | 95.15 | 96.26 | 94.10 | 99.45 |
Kappa | 50.41 | 76.47 | 94.72 | 97.40 | 93.13 | 99.41 |
Table 8.
Comparison of classification results of various networks on the CW dataset.
Table 8.
Comparison of classification results of various networks on the CW dataset.
No | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
1 | 96.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | 98.00 | 98.00 | 100.00 | 100.00 | 99.00 | 100.00 |
3 | 91.00 | 100.00 | 99.00 | 99.00 | 98.00 | 100.00 |
4 | 89.00 | 99.00 | 100.00 | 100.00 | 98.00 | 100.00 |
OA | 91.91 | 99.21 | 99.35 | 99.89 | 98.30 | 100.00 |
AA | 90.57 | 99.03 | 99.32 | 99.90 | 98.56 | 100.00 |
Kappa | 88.45 | 98.76 | 99.08 | 99.85 | 97.59 | 100.00 |
Table 9.
Comparison of classification results of various networks on LC dataset.
Table 9.
Comparison of classification results of various networks on LC dataset.
No | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
1 | 95.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | 72.00 | 97.00 | 89.00 | 94.00 | 77.00 | 98.00 |
3 | 91.00 | 100.00 | 99.00 | 100.00 | 95.00 | 100.00 |
4 | 32.00 | 75.00 | 93.00 | 79.00 | 53.00 | 96.00 |
5 | 64.00 | 96.00 | 97.00 | 97.00 | 87.00 | 98.00 |
OA | 74.10 | 94.39 | 95.18 | 95.24 | 85.77 | 97.24 |
AA | 67.10 | 93.32 | 94.69 | 93.93 | 80.71 | 96.69 |
Kappa | 63.78 | 92.54 | 92.09 | 95.88 | 80.86 | 96.33 |
Table 10.
Experimental study on ablation of different modules in DACNet.
Table 10.
Experimental study on ablation of different modules in DACNet.
Ablated Models | GCL | SSCL | CW | LC |
---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa |
---|
-w/o 1DCB | 92.71 | 93.18 | 93.98 | 92.55 | 92.31 | 93.25 | 96.43 | 96.85 | 97.14 | 86.24 | 88.57 | 87.68 |
-w/o 2DCB | 94.83 | 93.21 | 94.15 | 93.89 | 93.22 | 93.58 | 96.77 | 96.10 | 97.28 | 88.32 | 89.25 | 88.73 |
-w/o AM-SE | 99.82 | 99.85 | 99.69 | 99.45 | 99.32 | 99.31 | 99.62 | 99.42 | 99.78 | 94.74 | 92.04 | 92.97 |
-w/o AM-SA | 99.85 | 99.89 | 99.76 | 99.37 | 98.88 | 99.22 | 99.75 | 99.68 | 99.91 | 94.79 | 92.61 | 93.04 |
Full model | 99.94 | 99.96 | 99.91 | 99.52 | 99.45 | 99.41 | 100.00 | 100.00 | 100.00 | 97.24 | 96.69 | 96.33 |
Table 11.
Running time of six algorithm models on various datasets.
Table 11.
Running time of six algorithm models on various datasets.
Model | GCL | SSCL | CW | LC |
---|
Time(s) | Time (s) | Time (s) | Time (s) |
---|
1DCNN | 50.15 | 104.73 | 42.38 | 46.28 |
TS2DCNN | 200.98 | 98.69 | 55.84 | 72.63 |
3DCNN | 75.66 | 125.27 | 85.39 | 45.98 |
HybridSN | 392.37 | 480.50 | 355.31 | 227.87 |
ResNet-50 | 7436.27 | 6589.47 | 5897.76 | 3500.12 |
DACNet | 86.37 | 84.15 | 72.40 | 45.22 |
Table 12.
Comparison of experimental results between DACNet and traditional methods.
Table 12.
Comparison of experimental results between DACNet and traditional methods.
Models | GCL | SSCL | CW | LC |
---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa |
---|
SVM | 94.72 | 95.69 | 91.25 | 89.91 | 88.20 | 87.39 | 78.30 | 74.98 | 75.61 | 76.20 | 67.98 | 67.35 |
KNN | 93.05 | 92.25 | 88.56 | 89.55 | 87.22 | 86.93 | 86.61 | 84.53 | 80.85 | 74.21 | 62.36 | 63.96 |
NB | 51.10 | 25.00 | 0.00 | 33.71 | 14.29 | 0.00 | 40.12 | 25.00 | 0.00 | 34.45 | 20.00 | 0.00 |
DACNet | 99.94 | 99.96 | 99.91 | 99.52 | 99.45 | 99.41 | 100.00 | 100.00 | 100.00 | 97.24 | 96.69 | 96.33 |
Table 13.
Types and quantities of land cover categories in IP, PU, and SA datasets.
Table 13.
Types and quantities of land cover categories in IP, PU, and SA datasets.
Dataset | Category | Class | Number of Samples |
---|
IP | C1 | Alfalfa | 46 |
C2 | Corn-notill | 1428 |
C3 | Corn-mintill | 830 |
C4 | Corn | 237 |
C5 | Grass-pasture | 483 |
C6 | Grass-trees | 730 |
C7 | Grass-pasture-mowed | 28 |
C8 | Hay-windrowed | 478 |
C9 | Oats | 20 |
C10 | Soybean-nottill | 972 |
C11 | Soybean-mintill | 2455 |
C12 | Soybean-clean | 593 |
C13 | Wheat | 205 |
C14 | Woods | 1265 |
C15 | Buildings-Grass-Trees-Drivers | 386 |
C16 | Stone-Steel-Towers | 93 |
PU | C1 | Asphalt | 6631 |
C2 | Meadows | 18,649 |
C3 | Gravel | 2099 |
C4 | Trees | 3064 |
C5 | Painted metal sheets | 1345 |
C6 | Bare Soil | 5029 |
C7 | Bitumen | 1330 |
C8 | Self-Blocking Bricks | 3682 |
C9 | Shadows | 947 |
SA | C1 | Brocoli_green_weeds_1 | 2009 |
C2 | Brocoli_green_weeds_22 | 3726 |
C3 | Fallow | 1976 |
C4 | Fallow_rough_plow | 1394 |
C5 | Fallow_smooth | 2678 |
C6 | Stubble | 3959 |
C7 | Celery | 3579 |
C8 | Grapes_untrained | 11,271 |
C9 | Soil_vinyard_develop | 6203 |
C10 | Corn_senesced_green_weeds | 3278 |
C11 | Lettuce_romain_4wk | 1068 |
C12 | Lettuce_romain_5wk | 1927 |
C13 | Lettuce_romain_6wk | 916 |
C14 | Lettuce_romain_7wk | 1070 |
C15 | Vinyard_untrained | 7268 |
C16 | Vinyard_vertical_trellis | 1807 |
Table 14.
Comparison of classification results of various networks on IP dataset.
Table 14.
Comparison of classification results of various networks on IP dataset.
Class Names | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
Alfalfa | 0.00 | 96.00 | 100.00 | 93.00 | 94.00 | 96.00 |
Corn-notill | 41.00 | 95.00 | 94.00 | 95.00 | 95.00 | 95.00 |
Corn-mintill | 7.00 | 89.00 | 85.00 | 90.00 | 91.00 | 89.00 |
Corn | 11.00 | 96.00 | 89.00 | 93.00 | 92.00 | 94.00 |
Grass-pasture | 38.00 | 98.00 | 95.00 | 96.00 | 97.00 | 98.00 |
Grass-trees | 74.00 | 98.00 | 100.00 | 99.00 | 99.00 | 100.00 |
Grass-pasture-mowed | 0.00 | 83.00 | 93.00 | 75.00 | 93.00 | 95.00 |
Hay-windrowed | 84.00 | 97.00 | 100.00 | 99.00 | 99.00 | 100.00 |
Oats | 0.00 | 82.00 | 72.00 | 41.00 | 78.00 | 100.00 |
Soybean-notill | 44.00 | 94.00 | 92.00 | 97.00 | 97.00 | 98.00 |
Soybean-mintill | 47.00 | 94.00 | 94.00 | 96.00 | 95.00 | 96.00 |
Soybean-clean | 15.00 | 92.00 | 92.00 | 92.00 | 92.00 | 94.00 |
Wheat | 91.00 | 98.00 | 99.00 | 100.00 | 100.00 | 99.00 |
Woods | 72.00 | 99.00 | 98.00 | 97.00 | 93.00 | 95.00 |
Buildings-Grass-Trees-Drives | 45.00 | 91.00 | 88.00 | 93.00 | 92.00 | 93.00 |
Stone-Steel-Towers | 100.00 | 95.00 | 90.00 | 96.00 | 97.00 | 100.00 |
OA | 54.30 | 94.64 | 93.88 | 95.30 | 95.45 | 95.89 |
AA | 36.97 | 91.55 | 91.79 | 91.83 | 92.14 | 92.17 |
Kappa | 45.53 | 93.89 | 93.01 | 94.23 | 94.26 | 94.33 |
Table 15.
Comparison of classification results of various networks on PU dataset.
Table 15.
Comparison of classification results of various networks on PU dataset.
Class Names | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
Asphalt | 72.00 | 99.00 | 98.00 | 98.00 | 98.00 | 98.00 |
Meadows | 90.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Gravel | 71.00 | 97.00 | 95.00 | 99.00 | 96.00 | 100.00 |
Trees | 90.00 | 99.00 | 98.00 | 100.00 | 100.00 | 99.00 |
Painted metal sheets | 99.00 | 99.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Bare Soil | 85.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Bitumen | 75.00 | 100.00 | 99.00 | 99.00 | 99.00 | 99.00 |
Self-Blocking Bricks | 69.00 | 97.00 | 95.00 | 93.00 | 94.00 | 99.00 |
Shadows | 85.00 | 99.00 | 97.00 | 99.00 | 99.00 | 100.00 |
OA | 83.76 | 98.29 | 98.71 | 98.92 | 98.87 | 98.99 |
AA | 69.41 | 96.59 | 97.81 | 98.12 | 98.14 | 98.15 |
Kappa | 78.05 | 98.05 | 98.30 | 98.57 | 98.56 | 98.70 |
Table 16.
Comparison of classification results of various networks on SA dataset.
Table 16.
Comparison of classification results of various networks on SA dataset.
Class Names | 1DCNN | TS2DCNN | 3DCNN | HybridSN | ResNet-50 | DACNet |
---|
Brocoli_green_weeds_1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Brocoli_green_weeds_2 | 99.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Fallow | 94.00 | 100.00 | 99.00 | 99.00 | 100.00 | 100.00 |
Fallow_rough_plow | 97.00 | 99.00 | 98.00 | 99.00 | 99.00 | 99.00 |
Fallow_smooth | 97.00 | 100.00 | 100.00 | 100.00 | 99.00 | 100.00 |
Stubble | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Celery | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Grapes_untrained | 79.00 | 100.00 | 100.00 | 99.00 | 99.00 | 100.00 |
Soil_vinyard_develop | 99.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Corn_senesced_green_weeds | 97.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Lettuce_romaine_4wk | 96.00 | 100.00 | 99.00 | 100.00 | 100.00 | 100.00 |
Lettuce_romaine_5wk | 93.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Lettuce_romaine_6wk | 90.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Lettuce_romaine_7wk | 88.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Vinyard_untrained | 78.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Vinyard_vertical_trellis | 98.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
OA | 91.03 | 99.84 | 99.72 | 99.78 | 99.69 | 99.91 |
AA | 93.94 | 99.83 | 99.78 | 99.79 | 99.72 | 99.86 |
Kappa | 90.00 | 99.82 | 99.68 | 99.76 | 99.68 | 99.90 |