A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Model
2.3. Implementation Details
2.4. Mesoscale Signal Extraction
2.5. Evaluation Metrics
3. Results
3.1. Global Verification of Short-Term Forecasts
3.2. Validation with Buoy Observations
3.3. Spatial Analysis and Forecast Cases Globally
3.4. Forecasts Case in Mesoscale Eddy-Active Regions
3.5. Forecast Comparison Between Eddy-Active Regions and Global Average
3.6. Effect of Different Training Periods on Model Performance
3.6.1. Evaluation of Different Period Validation Dataset
3.6.2. Forecast Skill with Different Training Periods
3.7. Cross-Dataset Evaluation Using OSTIA
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Overview of Transformers
Appendix B. Model Architectures
Appendix B.1. ConvLSTM Architecture
Appendix B.2. ResNet Architecture
References
- Behera, S.K.; Luo, J.-J.; Masson, S.; Delecluse, P.; Gualdi, S.; Navarra, A.; Yamagata, T. Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study. J. Clim. 2005, 18, 4514–4530. [Google Scholar] [CrossRef]
- Zhou, L.-T.; Tam, C.-Y.; Zhou, W.; Chan, J.C.L. Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci. 2010, 27, 832–844. [Google Scholar] [CrossRef]
- Rauscher, S.A.; Jiang, X.; Steiner, A.; Williams, A.P.; Cai, D.M.; McDowell, N.G. Sea Surface Temperature Warming Patterns and Future Vegetation Change. J. Clim. 2015, 28, 7943–7961. [Google Scholar] [CrossRef]
- Salles, R.; Mattos, P.; Iorgulescu, A.-M.D.; Bezerra, E.; Lima, L.; Ogasawara, E. Evaluating temporal aggregation for predicting the sea surface temperature of the Atlantic Ocean. Ecol. Inform. 2016, 36, 94–105. [Google Scholar] [CrossRef]
- Cane, M.A.; Clement, A.C.; Kaplan, A.; Kushnir, Y.; Pozdnyakov, D.; Seager, R.; Zebiak, S.E.; Murtugudde, R. Twentieth-Century Sea Surface Temperature Trends. Science 1997, 275, 957–960. [Google Scholar] [CrossRef]
- Friedel, M.J. Data-driven modeling of surface temperature anomaly and solar activity trends. Environ. Model. Softw. 2012, 37, 217–232. [Google Scholar] [CrossRef]
- Castro, S.L.; Wick, G.A.; Steele, M. Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sens. Environ. 2016, 187, 458–475. [Google Scholar] [CrossRef]
- Bouali, M.; Sato, O.T.; Polito, P.S. Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens. Environ. 2017, 194, 100–114. [Google Scholar] [CrossRef]
- Chaidez, V.; Dreano, D.; Agusti, S.; Duarte, C.M.; Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 2017, 7, 8144. [Google Scholar] [CrossRef]
- Su, H.; Wang, A.; Zhang, T.; Qin, T.; Du, X.; Yan, X.-H. Super-resolution of subsurface temperature field from remote sensing observations based on machine learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102440. [Google Scholar] [CrossRef]
- Xu, G.; Xie, W.; Lin, X.; Liu, Y.; Hang, R.; Sun, W.; Liu, D.; Dong, C. Detection of three-dimensional structures of oceanic eddies using artificial intelligence. Ocean. Model. 2024, 190, 102385. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.-H.; Moum, J.N.; Wang, F.; Li, X.; Li, D. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations. Natl. Sci. Rev. 2022, 9, nwac044. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Xie, B.; Li, D.; Chi, J.; Yin, B.; Sun, G. Estimating thermohaline structures in the tropical Indian Ocean from surface parameters using an improved CNN model. Front. Mar. Sci. 2023, 10, 1181182. [Google Scholar] [CrossRef]
- Putra, D.P.; Hsu, P.-C. Leveraging Transfer Learning and U-Nets Method for Improved Gap Filling in Himawari Sea Surface Temperature Data Adjacent to Taiwan. ISPRS Int. J. Geo-Inf. 2024, 13, 162. [Google Scholar] [CrossRef]
- Young, C.-C.; Cheng, Y.-C.; Lee, M.-A.; Wu, J.-H. Accurate reconstruction of satellite-derived SST under cloud and cloud-free areas using a physically-informed machine learning approach. Remote Sens. Environ. 2024, 313, 114339. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502. [Google Scholar] [CrossRef]
- Sarkar, P.P.; Janardhan, P.; Roy, P. Prediction of sea surface temperatures using deep learning neural networks. SN Appl. Sci. 2020, 2, 1458. [Google Scholar] [CrossRef]
- Jia, X.; Ji, Q.; Han, L.; Liu, Y.; Han, G.; Lin, X. Prediction of Sea Surface Temperature in the East China Sea Based on LSTM Neural Network. Remote Sens. 2022, 14, 3300. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Shi, B.; Hao, Y.; Feng, L.; Ge, C.; Peng, Y.; He, H. An Attention-Based Context Fusion Network for Spatiotemporal Prediction of Sea Surface Temperature. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1504405. [Google Scholar] [CrossRef]
- Zheng, G.; Li, X.; Zhang, R.-H.; Liu, B. Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Sci. Adv. 2020, 6, eaba1482. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ge, C.; Lin, H.; Xu, Y.; Tan, Q.; Peng, Y.; He, H. Sea Surface Temperature Prediction Using ConvLSTM-Based Model with Deformable Attention. Remote Sens. 2024, 16, 4126. [Google Scholar] [CrossRef]
- He, H.L.; Shi, B.Y.; Hao, Y.J.; Feng, L.; Lyu, X.; Ling, Z. Forecasting sea surface temperature during typhoon events in the Bohai Sea using spatiotemporal neural networks. Atmos. Res. 2024, 309, 107578. [Google Scholar] [CrossRef]
- Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A deep learning approach to predict sea surface temperature based on multiple modes. Ocean. Model. 2023, 181, 102158. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Z.; Li, Y.; Wang, C.; Liu, Y.; Rong, T. Short-Term Prediction of Global Sea Surface Temperature Using Deep Learning Networks. J. Mar. Sci. Eng. 2023, 11, 1352. [Google Scholar] [CrossRef]
- Pan, X.; Jiang, T.; Sun, W.; Xie, J.; Wu, P.; Zhang, Z.; Cui, T. Effective attention model for global sea surface temperature prediction. Expert Syst. Appl. 2024, 254, 124411. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS′17), Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. Available online: https://arxiv.org/abs/2010.11929 (accessed on 21 April 2025).
- Zou, R.; Wei, L.; Guan, L. Super Resolution of Satellite-Derived Sea Surface Temperature Using a Transformer-Based Model. Remote Sens. 2023, 15, 5376. [Google Scholar] [CrossRef]
- Lv, M.; Wang, F.; Li, Y.; Zhang, Z.; Zhu, Y. Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean. J. Geophys. Res. Ocean. 2022, 127, e2021JC017581. [Google Scholar] [CrossRef]
- Carneiro, D.M.; King, R.; Martin, M.; Aguiar, A. Short-Range Ocean Forecast Error Characteristics in High Resolution Assimilative Systems; Forecasting Research Technical Report 645; Met Office: Edinburgh, The Scotland, 2021. Available online: https://digital.nmla.metoffice.gov.uk/IO_e084c2c3-dc73-4cf3-acc1-44091ce6ef32 (accessed on 21 April 2025).
- Lea, D.J.; While, J.; Martin, M.J.; Weaver, A.; Storto, A.; Chrust, M. A new global ocean ensemble system at the met Office: Assessing the impact of hybrid data assimilation and inflation settings. Q. J. R. Meteorol. Soc. 2022, 148, 1996–2030. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Yeager, S.G.; Fox-Kemper, B.; Bozec, A.; Castruccio, F.; Danabasoglu, G.; Horvat, C.; Kim, W.M.; Koldunov, N.; Li, Y.; et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. 2020, 13, 4595–4637. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ding, M.; Lin, P.; Yu, Z.; Yu, Y.; Meng, Y.; Li, Y.; Jian, X.; Jiang, J.; et al. Eddy-resolving Simulation of CAS-LICOM3 for Phase 2 of the Ocean Model Intercomparison Project. Adv. Atmos. Sci. 2020, 37, 1067–1080. [Google Scholar] [CrossRef]
- Ding, M.; Liu, H.; Lin, P.; Hu, A.; Meng, Y.; Li, Y.; Liu, K. Overestimated eddy kinetic energy in the eddy-rich regions simulated by eddy-resolving global ocean–sea ice models. Geophys. Res. Lett. 2022, 49, e2022GL098370. [Google Scholar] [CrossRef]
- Nian, R.; Cai, Y.; Zhang, Z.; He, H.; Wu, J.; Yuan, Q.; Geng, X.; Qian, Y.; Yang, H.; He, B. The Identification and Prediction of Mesoscale Eddy Variation via Memory in Memory With Scheduled Sampling for Sea Level Anomaly. Front. Mar. Sci. 2021, 8, 753942. [Google Scholar] [CrossRef]
- Zhu, R.; Song, B.; Qiu, Z.; Tian, Y. A Metadata-Enhanced Deep Learning Method for Sea Surface Height and Mesoscale Eddy Prediction. Remote Sens. 2024, 16, 1466. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Wang, X.; Tan, L.; Wu, J. Spatio–Temporal Attention-Based Deep Learning Framework for Mesoscale Eddy Trajectory Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3853–3867. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. arXiv 2021, arXiv:2105.05537. Available online: http://arxiv.org/abs/2105.05537 (accessed on 21 April 2025).
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. Available online: http://arxiv.org/abs/1412.6980 (accessed on 21 April 2025).
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2015), Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Bryan, F.O.; Tomas, R.; Dennis, J.M.; Chelton, D.B.; Loeb, N.G.; McClean, J.L. Frontal Scale Air–Sea Interaction in High-Resolution Coupled Climate Models. J. Clim. 2010, 23, 6277–6291. [Google Scholar] [CrossRef]
- Lin, P.; Liu, H.; Ma, J.; Li, Y. Ocean mesoscale structure–induced air–sea interaction in a high-resolution coupled model. Atmos. Ocean. Sci. Lett. 2019, 12, 98–106. [Google Scholar] [CrossRef]
- Zheng, W.; Lin, P.; Liu, H.; Luan, Y.; Ma, J.; Mo, H.; Liu, J. An assessment of the LICOM Forecast System under the IVTT class4 framework. Front. Mar. Sci. 2023, 10, 1112025. [Google Scholar] [CrossRef]
- Barbosa Aguiar, A.; Bell, M.J.; Blockley, E.; Calvert, D.; Crocker, R.; Inverarity, G.; King, R.; Lea, D.J.; Maksymczuk, J.; Martin, M.J.; et al. The Met Office Forecast Ocean Assimilation Model (FOAM) using a 1/12-degree grid for global forecasts. Q. J. R. Meteorol. Soc. 2024, 150, 3827–3852. [Google Scholar] [CrossRef]
- Blockley, E.W.; Martin, M.J.; McLaren, A.J.; Ryan, A.G.; Waters, J.; Lea, D.J.; Mirouze, I.; Peterson, K.A.; Sellar, A.; Storkey, D. Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev. 2014, 7, 2613–2638. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Zheng, W.; Luan, Y.; Ma, J.; Ding, M.; Mo, H.; Wan, L.; Ling, T. A global eddy-resolving ocean forecast system in China–LICOM Forecast System (LFS). J. Oper. Oceanogr. 2023, 16, 15–27. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, P.; Liu, H.; Zheng, W.; Wang, P.; Xu, T.; Li, Y.; Liu, J.; Chen, C. Short-Term Sea Surface Temperature Forecasts for the Equatorial Pacific Based on Long Short-Term Memory Network. Chin. J. Atmos. Sci. 2024, 48, 745–754. (In Chinese) [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics From Satellite Altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- Kwon, Y.-O.; Alexander, M.A.; Bond, N.A.; Frankignoul, C.; Nakamura, H.; Qiu, B.; Thompson, L.A. Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review. J. Clim. 2010, 23, 3249–3281. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, Y.; Wang, W. Hurricane influence on the oceanic eddies in the Gulf Stream region. Nat. Commun. 2025, 16, 583. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Kang, D.; Curchitser, E.N. Gulf Stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Ocean. 2013, 118, 4474–4487. [Google Scholar] [CrossRef]
- Kang, D.; Curchitser, E.N. Energetics of Eddy–Mean Flow Interactions in the Gulf Stream Region. J. Phys. Oceanogr. 2015, 45, 1103–1120. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Wang, F.; Lv, M. Weak Mesoscale Variability in the Optimum Interpolation Sea Surface Temperature (OISST)-AVHRR-Only Version 2 Data before 2007. Remote Sens. 2022, 14, 409. [Google Scholar] [CrossRef]
Model | Lead Times | 1-Day | 2-Day | 3-Day | 4-Day | 5-Day | 6-Day | 7-Day | 8-Day | 9-Day | 10-Day | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | ||||||||||||
ConvLSTM | Global | 10.13 | 5.65 | 4.37 | 3.67 | 3.17 | 2.88 | 2.76 | 2.76 | 2.91 | 3.15 | |
KE | 20.42 | 10.60 | 7.45 | 5.96 | 4.80 | 4.10 | 3.72 | 3.51 | 3.52 | 3.73 | ||
GS | 12.19 | 5.96 | 4.13 | 3.53 | 3.25 | 3.15 | 3.20 | 3.40 | 3.70 | 4.09 | ||
OSA | 10.41 | 4.19 | 2.51 | 1.81 | 1.29 | 0.87 | 0.50 | 0.25 | 0.12 | 0.08 | ||
ResNet | Global | 11.66 | 6.66 | 5.75 | 5.59 | 5.68 | 5.94 | 6.25 | 6.58 | 6.95 | 7.33 | |
KE | 21.32 | 10.94 | 8.24 | 7.41 | 7.17 | 7.23 | 7.52 | 7.88 | 8.41 | 9.08 | ||
GS | 16.82 | 8.03 | 5.80 | 5.28 | 5.37 | 5.73 | 6.29 | 6.90 | 7.52 | 8.05 | ||
OSA | 25.79 | 11.47 | 7.45 | 6.08 | 5.59 | 5.51 | 5.64 | 5.87 | 6.13 | 6.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Lin, P.; Liu, H.; Wang, P.; Wang, Y.; Zheng, W.; Yu, Z.; Jiang, J.; Li, Y.; He, H. A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies. Remote Sens. 2025, 17, 1507. https://doi.org/10.3390/rs17091507
Zhang T, Lin P, Liu H, Wang P, Wang Y, Zheng W, Yu Z, Jiang J, Li Y, He H. A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies. Remote Sensing. 2025; 17(9):1507. https://doi.org/10.3390/rs17091507
Chicago/Turabian StyleZhang, Tao, Pengfei Lin, Hailong Liu, Pengfei Wang, Ya Wang, Weipeng Zheng, Zipeng Yu, Jinrong Jiang, Yiwen Li, and Hailun He. 2025. "A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies" Remote Sensing 17, no. 9: 1507. https://doi.org/10.3390/rs17091507
APA StyleZhang, T., Lin, P., Liu, H., Wang, P., Wang, Y., Zheng, W., Yu, Z., Jiang, J., Li, Y., & He, H. (2025). A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies. Remote Sensing, 17(9), 1507. https://doi.org/10.3390/rs17091507