Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Site and Plant Establishment
2.3. Plant Phenotyping
2.4. Statistical Analyses
3. Results
3.1. Forage Yield
3.2. Red–Green–Blue (RGB) Vegetation Indices and Canopy Temperature Difference (CTD)
3.3. Relationships Between Red–Green–Blue (RGB) Indices and Canopy Temperature Difference (CTD)
3.4. Relationships Between Forage Yield and Canopy Temperature Difference (CTD)
4. Discussion
4.1. Forage Yield
4.2. Remote Sensing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, J.D.; McCaughey, W.P.; Cohen, R.D.H.; McAllister, T.A.; Majak, W. Enhancing pasture productivity with alfalfa: A review. Can. J. Plant Sci. 2000, 80, 513–519. [Google Scholar] [CrossRef]
- Acharya, J.P.; Lopez, Y.; Gouveia, B.T.; de Bem Oliveira, I.; Resende, M.F.R.; Muñoz, P.R.; Rios, E.F. Breeding alfalfa (Medicago sativa L.) adapted to subtropical agroecosystems. Agronomy 2020, 10, 742. [Google Scholar] [CrossRef]
- Hrbáčková, M.; Dvořák, P.; Takáč, T.; Tichá, M.; Luptovčiak, I.; Šamajová, O.; Ovečka, M.; Šamaj, J. Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Front. Plant Sci. 2020, 11, 592. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, Y.; Zhao, M.; Shen, H.; Xu, L.; Luo, Y.; Liu, Y.; Xing, A.; Kang, J.; Jing, H.; et al. Yield and quality properties of alfalfa (Medicago sativa L.) and their influencing factors in China. Eur. J. Agron. 2022, 141, 126637. [Google Scholar] [CrossRef]
- Wang, K.; Yan, J.; Tanvir, R.; Li, L.; Liu, Y.; Zhang, W. Improved forage quality and biomass yield of alfalfa (Medicago sativa L.) by Arabidopsis QQS orphan gene. Curr. Plant Biol. 2023, 35–36, 100295. [Google Scholar] [CrossRef]
- Baxevanos, D.; Loka, D.; Tsialtas, I.T. Evaluation of alfalfa cultivars under rainfed Mediterranean conditions. J. Agric. Sci. 2021, 159, 281–292. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Humphries, A.W.; Auricht, G.C. Breeding lucerne for Australia’s southern dryland cropping environments. Aust. J. Agric. Res. 2001, 52, 153. [Google Scholar] [CrossRef]
- Ward, P.R. Predicting the impact of perennial phases on average leakage from farming systems in south-western Australia. Aust. J. Agric. Res. 2006, 57, 269. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Shanker, A.K. Dryland agriculture: Bringing resilience to crop production under changing climate. In Crop Stress and Its Management: Perspectives and Strategies; Springer: Dordrecht, The Netherlands, 2012; pp. 19–44. [Google Scholar] [CrossRef]
- Del Pozo, A.; Ovalle, C.; Espinoza, S.; Barahona, V.; Gerding, M.; Humphries, A. Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. Eur. J. Agron. 2017, 84, 16–22. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Liu, Z.; Yang, F.; Yin, G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 2019, 232, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Anower, M.R.; Boe, A.; Auger, D.; Mott, I.W.; Peel, M.D.; Xu, L.; Kanchupati, P.; Wu, Y. Comparative drought response in eleven diverse alfalfa accessions. J. Agron. Crop Sci. 2017, 203, 1–13. [Google Scholar] [CrossRef]
- Prince, S.; Anower, M.R.; Motes, C.M.; Hernandez, T.D.; Liao, F.; Putman, L.; Mattson, R.; Seethepalli, A.; Shah, K.; Komp, M.; et al. Intraspecific variation for leaf physiological and root morphological adaptation to drought stress in alfalfa (Medicago sativa L.). Front. Plant Sci. 2022, 13, 795011. [Google Scholar] [CrossRef]
- Erice, G.; Louahlia, S.; Irigoyen, J.J.; Sánchez-Díaz, M.; Alami, I.T.; Avice, J.-C. Water use efficiency, transpiration, and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ. Exp. Bot. 2011, 72, 123–130. [Google Scholar] [CrossRef]
- Erice, G.; Louahlia, S.; Irigoyen, J.J.; Sanchez-Diaz, M.; Avice, J.-C. Biomass partitioning, morphology, and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J. Plant Physiol. 2010, 167, 114–120. [Google Scholar] [CrossRef]
- Lin, S.; Medina, C.A.; Norberg, O.S.; Combs, D.; Wang, G.; Shewmaker, G.; Fransen, S.; Llewellyn, D.; Yu, L.X. Genome-wide association studies identifying multiple loci associated with alfalfa forage quality. Front. Plant Sci. 2021, 12, 648192. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.H.; Poncet, C.; Prosperi, J.M.; Santoni, S.; Ronfort, J. Domestication history in the Medicago sativa species complex: Inferences from nuclear sequence polymorphism. Mol. Ecol. 2006, 15, 1589–1602. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Orellana, J.S.T.; de Souza Farias, J.W.; Silva, L.C.C.; Passos, A.R. Evaluation and selection in half-sib progenies of Physalis ixocarpa Brot. aiming to increase productivity. Sci. Hortic. 2021, 290, 110531. [Google Scholar] [CrossRef]
- Akdemir, D.; Beavis, W.; Fritsche-Neto, R.; Singh, A.K.; Isidro-Sánchez, J. Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity 2019, 122, 672–683. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Bouton, J.H. Breeding lucerne for persistence. Crop Pasture Sci. 2012, 63, 95. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 2022, 35, 215–230. [Google Scholar] [CrossRef]
- Akdemir, D.; Isidro-Sánchez, J. Design of training populations for selective phenotyping in genomic prediction. Sci. Rep. 2019, 9, 1446. [Google Scholar] [CrossRef]
- Pasala, R.; Pandey, B.B. Plant phenomics: High-throughput technology for accelerating genomics. J. Biosci. 2020, 45, 111. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef]
- Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
- Watt, M.; Fiorani, F.; Usadel, B.; Rascher, U.; Muller, O.; Schurr, U. Phenotyping: New windows into the plant for breeders. Annu. Rev. Plant Biol. 2020, 71, 689–712. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Tian, Y.; Li, Z.; Ge, Y.; Zhang, J.; Wang, Y.; Zhou, G.; Deng, X.; Zhang, Z.; et al. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. 2022, 3, 100344. [Google Scholar] [CrossRef]
- Biswas, A.; Andrade, M.H.M.L.; Acharya, J.P.; de Souza, C.L.; Lopez, Y.; de Assis, G.; Shirbhate, S.; Singh, A.; Munoz, P.; Rios, E.F. Phenomics-assisted selection for herbage accumulation in alfalfa (Medicago sativa L.). Front. Plant Sci. 2021, 12, 756768. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, A.; Espinoza, S.; Barahona, V.; Inostroza, L.; Gerding, M.; Humphries, A.; Lobos, G.; Cares, J.; Ovalle, C. Aerial and ground-based phenotyping of an alfalfa diversity panel to assess adaptation to a prolonged drought period in a Mediterranean environment of central Chile. Eur. J. Agron. 2023, 144, 126751. [Google Scholar] [CrossRef]
- Liu, W.T.; Negrón Juárez, R.I. ENSO drought onset prediction in northeast Brazil using NDVI. Int. J. Remote Sens. 2001, 22, 3483–3501. [Google Scholar] [CrossRef]
- Wang, D.; Wilson, C.; Shannon, M.C. Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain. Int. J. Remote Sens. 2002, 23, 811–824. [Google Scholar] [CrossRef]
- Clemente, A.A.; Maciel, G.M.; Siquieroli, A.C.S.; Gallis, R.B.A.; Pereira, L.M.; Duarte, J.G. High-throughput phenotyping to detect anthocyanins, chlorophylls, and carotenoids in red lettuce germplasm. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102533. [Google Scholar] [CrossRef]
- Do Amaral, E.S.; Vieira Silva, D.; Dos Anjos, L.; Schilling, A.C.; Dalmolin, Â.C.; Mielke, M.S. Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage. New For. 2019, 50, 377–388. [Google Scholar] [CrossRef]
- Bai, H.; Purcell, L.C. Aerial canopy temperature differences between fast- and slow-wilting soybean genotypes. J. Agron. Crop Sci. 2018, 204, 243–251. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Wang, B.; Zhao, J. Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiol. Plant. 2018, 40, 25. [Google Scholar] [CrossRef]
- De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Gago, J.; Ribas-Carbó, M.; Galmés, J. High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements. Agric. Water Manag. 2022, 260, 107283. [Google Scholar] [CrossRef]
- Tang, Z.; Parajuli, A.; Chen, C.J.; Hu, Y.; Revolinski, S.; Medina, C.A.; Lin, S.; Zhang, Z.; Yu, L.X. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci. Rep. 2021, 11, 3336. [Google Scholar] [CrossRef] [PubMed]
- Humphries, A.W.; Ovalle, C.; Hughes, S.; del Pozo, A.; Inostroza, L.; Barahona, V.; Yu, L.; Yerzhanova, S.; Rowe, T.; Hill, J.; et al. Characterization and pre-breeding of diverse alfalfa wild relatives originating from drought-stressed environments. Crop Sci. 2021, 61, 69–88. [Google Scholar] [CrossRef]
- Inostroza, L.; Espinoza, S.; Barahona, V.; Gerding, M.; Humphries, A.; del Pozo, A.; Ovalle, C. Phenotypic diversity and productivity of Medicago sativa subspecies from drought-prone environments in Mediterranean-type climates. Plants 2021, 10, 862. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sens. 2019, 11, 567. [Google Scholar] [CrossRef]
- Inostroza, L.; Bhakta, M.; Acuña, H.; Vásquez, C.; Ibáñez, J.; Tapia, G.; Mei, W.; Kirst, M.; Resende, M.; Munoz, P. Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. Plant Genome 2018, 11, 170096. [Google Scholar] [CrossRef]
- Friedman, J.; Rubin, M.J. All in good time: Understanding annual and perennial strategies in plants. Am. J. Bot. 2015, 102, 497–499. [Google Scholar] [CrossRef]
- Tang, W.; Guo, H.; Baskin, C.C.; Xiong, W.; Yang, C.; Li, Z.; Song, H.; Wang, T.; Yin, J.; Wu, X.; et al. Effect of light intensity on morphology, photosynthesis, and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants 2022, 11, 1688. [Google Scholar] [CrossRef]
- Zhu, X.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Li, X.; Wei, Y.; Pecetti, L.; Brummer, E.C. Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genom. 2015, 16, 1020. [Google Scholar] [CrossRef]
- Biazzi, E.; Nazzicari, N.; Pecetti, L.; Brummer, E.C.; Palmonari, A.; Tava, A.; Annicchiarico, P. Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE 2017, 12, e0169234. [Google Scholar] [CrossRef]
- Chapman, E.A.; Thomsen, H.C.; Tulloch, S.; Correia, P.M.P.; Luo, G.; Najafi, J.; DeHaan, L.R.; Crews, T.E.; Olsson, L.; Lundquist, P.-O.; et al. Perennials as future grain crops: Opportunities and challenges. Front. Plant Sci. 2022, 13, 898769. [Google Scholar] [CrossRef] [PubMed]
- Majhi, P.K. Heritability and its genetic worth for plant breeding. In Advances in Genetics and Plant Breeding; AkiNik Publications: Delhi, India, 2020; p. 169. [Google Scholar] [CrossRef]
- Mnafgui, W.; Jabri, C.; Jihnaoui, N.; Maiza, N.; Guerchi, A.; Zaidi, N.; Basson, G.; Keyster, E.M.; Djébali, N.; Pecetti, L.; et al. Discovering new genes for alfalfa (Medicago sativa) growth and biomass resilience in combined salinity and Phoma medicaginis infection through GWAS. Front. Plant Sci. 2024, 15, 1348168. [Google Scholar] [CrossRef] [PubMed]
- Junior, E.M.; Rosado, L.D.S.; Costa, A.C.; Caixeta, E.T.; dos Santos, C.E.M. Full-sib progenies show greater genetic diversity than half-sib progenies in sour passion fruit: An approach by SSR markers. Mol. Biol. Rep. 2023, 50, 4133–4144. [Google Scholar] [CrossRef] [PubMed]
- Lussem, U.; Bolten, A.; Gnyp, M.L.; Jasper, J.; Bareth, G. Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 1215–1219. [Google Scholar] [CrossRef]
- Gupta, S.; Ibaraki, Y.; Trivedi, P. Applications of RGB color imaging in plants. In Plant Image Analysis; CRC Press: Boca Raton, FL, USA, 2014; pp. 41–62. [Google Scholar] [CrossRef]
- Sunoj, S.; Igathinathane, C.; Saliendra, N.; Hendrickson, J.; Archer, D. Color calibration of digital images for agriculture and other applications. ISPRS J. Photogramm. Remote Sens. 2018, 146, 221–234. [Google Scholar] [CrossRef]
- Nguyen, L.L.P.; Baranyai, L.; Nagy, D.; Mahajan, P.V.; Zsom-Muha, V.; Zsom, T. Color analysis of horticultural produce using hue spectra fingerprinting. MethodsX 2021, 8, 101594. [Google Scholar] [CrossRef]
- Chaki, J.; Dey, N. Introduction to image color feature. In Color Feature Extraction and Image Analysis; Springer: Singapore, 2020; pp. 1–28. [Google Scholar] [CrossRef]
- Smith, S.D. Quantifying color variation: Improved formulas for calculating hue with segment classification. Appl. Plant Sci. 2014, 2, 1300088. [Google Scholar] [CrossRef]
- Sarkar, S.; Ramsey, A.F.; Cazenave, A.-B.; Balota, M. Peanut leaf wilting estimation from RGB color indices and logistic models. Front. Plant Sci. 2021, 12, 658621. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Vatter, T.; Aparicio Gutiérrez, N.; Nieto-Taladriz, M.T.; Araus, J.L. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 2019, 105, 146–156. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef]
- Marín, J.; Yousfi, S.; Mauri, P.V.; Parra, L.; Lloret, J.; Masaguer, A. RGB vegetation indices, NDVI, and biomass as indicators to evaluate C3 and C4 turfgrass under different water conditions. Sustainability 2020, 12, 2160. [Google Scholar] [CrossRef]
- Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.; Schmidhalter, U. Evaluation of yield and drought using active and passive spectral sensing systems at the reproductive stage in wheat. Front. Plant Sci. 2017, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Marín, B.; García-Plazaola, J.I.; Hernández, A.; Esteban, R. Plant photosynthetic pigments: Methods and tricks for correct quantification and identification. In Advances in Plant Ecophysiology Techniques; Springer International Publishing: Cham, Switzerland, 2020; pp. 29–50. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; O’Shaughnessy, S.A.; Evett, S.R.; Howell, T.A. Using plant canopy temperature to improve irrigated crop management. In Proceedings of the 24th Annual Central Plains Irrigation Conference, Colby, KS, USA, 21–22 February 2012; U.S. Department of Agriculture: Washington, DC, USA, 2020; pp. 203–223. [Google Scholar]
- Rehman, M.U.; Gull, Y.; Mir, M.M.; Iqbal, U.; Angmo, T.; Hanief, M.; Mahmood, R.; Rather, G.H.; Hassan, G.I.; Banday, S.A. Plant water relations and irrigation. In Temperate Nuts; Springer Nature: Singapore, 2023; pp. 187–208. [Google Scholar] [CrossRef]
- Idso, S.B.; Reginato, R.J.; Hatfield, J.L.; Walker, G.K.; Jackson, R.D.; Pinter, P.J. A generalization of the stress-degree-day concept of yield prediction to accommodate a diversity of crops. Agric. Meteorol. 1980, 21, 205–211. [Google Scholar] [CrossRef]
- Cazenave, A.; Shah, K.; Trammell, T.; Komp, M.; Hoffman, J.; Motes, C.M.; Monteros, M.J. High-throughput approaches for phenotyping alfalfa germplasm under abiotic stress in the field. Plant Phenome J. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Graß, R.; Böttcher, U.; Lilienthal, H.; Wilde, P.; Kage, H. Is canopy temperature suitable for high-throughput field phenotyping of drought resistance of winter rye in temperate climate? Eur. J. Agron. 2020, 120, 126104. [Google Scholar] [CrossRef]
Year | January | February | March | April | May | June | July | August | September | October | November | December | Annual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmean (°C) | 2020 | 22.4 | 21.5 | 19.9 | 16.4 | 12.8 | 8.7 | 9 | 9.4 | 11.5 | 14.4 | 17.8 | 19.8 | 15.3 |
2021 | 21.7 | 20.8 | 19.3 | 15.6 | 11.4 | 9.8 | 8.2 | 9.7 | 11.1 | 14.1 | 17.4 | 20.2 | 14.9 | |
2022 | 20.2 | 20.8 | 18.6 | 14 | 9.6 | 6.6 | 7.1 | 8.8 | 10.9 | 13.2 | 18.4 | 20.5 | 14.1 | |
2023 | 21.5 | 22.6 | 19.9 | 15.9 | 8.4 | 10.2 | 8.9 | 9.8 | 10.8 | 12.6 | 14.4 | 18.1 | 14.4 | |
Tmin (°C) | 2020 | 12 | 10.6 | 9.3 | 6.7 | 4.2 | 3.5 | 3.2 | 2.7 | 3.5 | 4.7 | 7.7 | 9.2 | 6.4 |
2021 | 11.8 | 10.7 | 9.5 | 7.0 | 4.6 | 3.8 | 1.3 | 3.3 | 3.1 | 4.9 | 7.0 | 9.7 | 6.4 | |
2022 | 9.6 | 10.0 | 8.6 | 5.6 | 2.6 | 0.9 | 1.7 | 1.5 | 2.7 | 4.7 | 8.4 | 10.7 | 5.6 | |
2023 | 11.5 | 11.9 | 9.2 | 7.1 | -1.9 | 5.3 | 3.7 | 4.1 | 5.5 | 4.6 | 6.7 | 9.1 | 6.4 | |
Tmax (°C) | 2020 | 32.8 | 32.5 | 30.6 | 26 | 21.4 | 13.9 | 14.8 | 16.1 | 19.6 | 24.2 | 28 | 30.5 | 24.2 |
2021 | 31.7 | 30.8 | 29.1 | 24.3 | 18.1 | 15.8 | 15 | 16 | 19.2 | 23.2 | 27.8 | 30.8 | 23.5 | |
2022 | 30.7 | 31.5 | 28.7 | 22.4 | 16.5 | 12.3 | 12.4 | 16.1 | 19.1 | 21.8 | 28.3 | 30.4 | 22.5 | |
2023 | 31.6 | 33.3 | 30.5 | 24.7 | 18.6 | 15.1 | 14 | 15.4 | 16.2 | 20.5 | 22.1 | 27.2 | 22.4 | |
Precipitation (mm) | 2020 | 2.5 | 0.0 | 0.1 | 47.8 | 38.5 | 177.1 | 14.1 | 55.2 | 29.9 | 18.5 | 0.0 | 0.0 | 383.7 |
2021 | 19.6 | 0.6 | 0.2 | 22.8 | 127.7 | 58.2 | 45.8 | 69.3 | 45.8 | 7.0 | 0.0 | 0.0 | 397.0 | |
2022 | 0 | 10.6 | 3.2 | 33.8 | 50.2 | 147.2 | 136 | 57.9 | 15.2 | 9.9 | 16.2 | 0.0 | 480.2 | |
2023 | 1.6 | 0.0 | 0.0 | 12.4 | 53.2 | 148.6 | 123.5 | 165.2 | 122.9 | 28.4 | 21.3 | 1.3 | 678.4 |
Harvesting Date | Water Regime | Intensity | Hue | Saturation | Lightness | a* | b* | u* | v* | GA | GGA | CTD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jun-21 | Irrigated | −0.06 NS | −0.04 NS | −0.04 NS | −0.05 NS | 0.01 NS | 0.06 NS | 0.03 NS | 0.04 NS | 0.07 NS | 0.07 NS | 0.03 NS |
Rainfed | −0.07 NS | 0.16 * | 0.27 *** | −0.05 NS | −0.11 NS | −0.06 NS | −0.17 ** | −0.04 NS | 0.15 * | 0.16 * | 0.13 * | |
Oct-21 | Irrigated | −0.62 *** | 0.66 *** | 0.38 *** | −0.55 *** | −0.71 *** | 0.26 *** | −0.74 *** | 0.28 *** | 0.57 *** | 0.66 *** | −0.32 *** |
Rainfed | −0.61 *** | 0.57 *** | 0.47 *** | −0.58 *** | −0.61 *** | 0.03 NS | −0.68 *** | 0.05 NS | 0.41 *** | 0.57 *** | −0.28 *** | |
Sep-22 | Irrigated | −0.56 *** | 0.46 *** | 0.44 *** | −0.50 *** | −0.65 *** | 0.28 *** | −0.65 *** | 0.25 *** | 0.60 *** | 0.63 *** | −0.12 NS |
Rainfed | −0.71 *** | 0.57 *** | 0.64 *** | −0.65 *** | −0.76 *** | 0.37 *** | −0.77 *** | 0.38 *** | 0.70 *** | 0.73 *** | −0.15 * | |
Nov-22 | Irrigated | −0.66 *** | 0.31 *** | 0.70 *** | −0.61 *** | −0.69 *** | 0.37 *** | −0.67 *** | 0.34 *** | 0.39 *** | 0.45 *** | −0.76 *** |
Rainfed | −0.35 *** | 0.19 ** | 0.34 *** | −0.28 *** | −0.51 *** | 0.36 *** | −0.44 *** | 0.37 *** | 0.35 *** | 0.38 *** | −0.57 *** | |
Jul-23 | Irrigated | −0.05 NS | 0.36 *** | 0.03 NS | 0.24 *** | −0.49 *** | 0.21 *** | −0.52 *** | 0.34 *** | 0.36 *** | 0.36 *** | |
Rainfed | −0.50 *** | 0.67 *** | −0.25 *** | −0.47 *** | −0.45 *** | −0.22 *** | −0.51 *** | −0.17 ** | 0.33 *** | 0.36 *** | ||
Sep-23 | Irrigated | −0.15 * | 0.02 NS | 0.15 * | −0.17 ** | 0.08 NS | −0.20 ** | 0.05 NS | −0.21 ** | −0.09 NS | −0.09 NS | |
Rainfed | 0.02 NS | 0.00 NS | 0.03 NS | 0.03 NS | −0.06 NS | 0.06 NS | −0.06 NS | 0.06 NS | 0.04 NS | 0.04 NS | ||
Nov-23 | Irrigated | −0.44 *** | 0.41 *** | −0.23 *** | −0.46 *** | −0.33 *** | −0.48 *** | −0.39 *** | −0.48 *** | 0.44 *** | 0.40 *** | −0.52 *** |
Rainfed | −0.36 *** | 0.20 ** | −0.26 *** | −0.39 *** | −0.17 ** | −0.39 *** | −0.25 *** | −0.41 *** | 0.28 *** | 0.19 ** | −0.34 *** |
Harvesting Date | Water Regime | Intensity | Hue | Saturation | Lightness | a* | b* | u* | v* | GA | GGA |
---|---|---|---|---|---|---|---|---|---|---|---|
Jun-21 | Irrigated | 0.29 *** | 0.04 NS | 0.25 *** | 0.36 *** | −0.34 *** | 0.11 NS | −0.37 *** | 0.18 ** | 0.31 *** | 0.28 *** |
Rainfed | 0.32 *** | −0.34 *** | −0.14 * | 0.40 *** | −0.36 *** | 0.42 *** | −0.29 *** | 0.44 *** | 0.29 *** | 0.29 *** | |
Oct-21 | Irrigated | 0.38 *** | −0.30 *** | −0.31 *** | 0.31 *** | 0.45 *** | −0.28 *** | 0.44 *** | −0.28 *** | −0.32 *** | −0.35 *** |
Rainfed | 0.39 *** | −0.20 ** | −0.28 *** | 0.38 *** | 0.30 *** | −0.06 NS | 0.30 *** | −0.05 NS | −0.17 ** | −0.21 *** | |
Sep-22 | Irrigated | 0.13 * | −0.20 ** | −0.02 NS | 0.13 * | 0.16 * | 0.03 NS | 0.18 ** | 0.03 NS | −0.07 NS | −0.09 NS |
Rainfed | 0.17 ** | 0.01 NS | −0.26 *** | 0.12 NS | 0.21 ** | −0.29 *** | 0.17 ** | −0.28 *** | −0.11 NS | −0.10 NS | |
Nov-22 | Irrigated | 0.74 *** | −0.42 *** | −0.78 *** | 0.68 *** | 0.85 *** | −0.42 *** | 0.83 *** | −0.41 *** | −0.51 *** | −0.59 *** |
Rainfed | 0.29 *** | −0.25 *** | −0.36 *** | 0.21 *** | 0.54 *** | −0.38 *** | 0.47 *** | −0.40 *** | −0.24 *** | −0.34 *** | |
Nov-23 | Irrigated | 0.71 *** | −0.79 *** | 0.07 NS | 0.70 *** | 0.74 *** | 0.52 *** | 0.77 *** | 0.53 *** | −0.80 *** | −0.60 *** |
Rainfed | 0.69 *** | −0.65 *** | 0.28 *** | 0.69 *** | 0.59 *** | 0.53 *** | 0.65 *** | 0.55 *** | −0.71 *** | −0.45 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noushahi, H.A.; Inostroza, L.; Barahona, V.; Espinoza, S.; Ovalle, C.; Quitral, K.; Lobos, G.A.; Guerra, F.P.; Kefauver, S.C.; del Pozo, A. Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping. Remote Sens. 2025, 17, 1517. https://doi.org/10.3390/rs17091517
Noushahi HA, Inostroza L, Barahona V, Espinoza S, Ovalle C, Quitral K, Lobos GA, Guerra FP, Kefauver SC, del Pozo A. Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping. Remote Sensing. 2025; 17(9):1517. https://doi.org/10.3390/rs17091517
Chicago/Turabian StyleNoushahi, Hamza Armghan, Luis Inostroza, Viviana Barahona, Soledad Espinoza, Carlos Ovalle, Katherine Quitral, Gustavo A. Lobos, Fernando P. Guerra, Shawn C. Kefauver, and Alejandro del Pozo. 2025. "Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping" Remote Sensing 17, no. 9: 1517. https://doi.org/10.3390/rs17091517
APA StyleNoushahi, H. A., Inostroza, L., Barahona, V., Espinoza, S., Ovalle, C., Quitral, K., Lobos, G. A., Guerra, F. P., Kefauver, S. C., & del Pozo, A. (2025). Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping. Remote Sensing, 17(9), 1517. https://doi.org/10.3390/rs17091517