Satellite Remote Sensing in Seismology. A Review
Abstract
:1. Introduction
2. Deformations
2.1. Optical Sensors
2.2. InSAR
2.3. GPS
2.4. Gravity
3. Thermal Phenomena
3.1. Earth Surface
3.2. Sea Surface
3.3. Atmosphere
4. Electromagnetics
5. Discussion
6. Conclusions
References
- Showalter, P.S. Remote sensing’s use in disaster research: a review. Disaster Prevent. Manage. 2001, 10, 21–29. [Google Scholar] [CrossRef]
- Paylor, E.D., II; Evans, D.L.; Tralli, D.M. Remote sensing and geospatial information for natural hazards characterization. ISPRS J. Photogramm. Remote Sens. 2005, 59, 181–253. [Google Scholar] [CrossRef]
- IGOS. International Global Observation Strategy Geohazards Theme Report; ESA/UNESCO: European Space Agency, Paris, France, 2004; p. 54. [Google Scholar]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geog. 2009, 33, 183–207. [Google Scholar] [CrossRef]
- Tronin, A.A. Remote sensing and earthquakes: a review. Phys. Chem. Earth 2006, 31, 138–142. [Google Scholar] [CrossRef]
- Hayakawa, M. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Terra Sci. Pub. Co. Ltd.: Tokyo, Japan, 1999; p. 996. [Google Scholar]
- Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Hayakawa, M.; Molchanov, O.A. (Eds.) Terra Science Publishing Co. Ltd.: Tokyo, Japan, 2002; p. 477.
- Clark, M.M. Finding active faults using aerial photographs. Earthqua. Inf. Bull. 1978, 10, 169–173. [Google Scholar]
- Trifonov, V.G. Active faults in Eurasia: general remarks. Tectonophysics 2004, 380, 123–130. [Google Scholar] [CrossRef]
- Trifonov, V.G.; Makarov, V.I.; Kojurin, A.I.; Skobelev, S.F.; Schulz, S.S., Jr. Aerospace Research of Seismic Zones; Nauka: Moscow, USSR, 1988; p. 133. (in Russian) [Google Scholar]
- Saraf, A.K. IRS-1C-PAN Depicts Chamoli earthquake induced landslides in Garhwal Himalayas, India. Int. J. Remote Sens. 2000, 21, 2345–2352. [Google Scholar] [CrossRef]
- Van Puymbroeck, N.; Michel, R.; Binet, R.; Avouac, J.P.; Taboury, J. Measuring earthquakes from optical satellite images. Appl. Opt. Inf. Process. 2000, 39, 1–14. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P. Deformation due to the 17 August Izmit, Turkey, earthquake measured from SPOT images. J. Geophys. Res. 2002. [Google Scholar] [CrossRef]
- Dominguez, S.; Avouac, J.P.; Michel, R. Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of Central Taiwan. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Arellano-Baeza, A.A.; Zverev, A.T.; Malinnikov, V.A. Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data. Adv. Space Res. 2006, 37, 690–697. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Peltzer, G.; Hudnut, K.; Feigl, K. Analysis of coseismic surface displacement gradients using radar interferometry: New insights into the Landers earthquake. J. Geophys. Res. 1994, 99, 21971–21981. [Google Scholar] [CrossRef]
- Tobita, M.; Fujiwara, S.; Ozawa, S.; Rosen, P.A.; Fielding, E.J.; Werner, C.L.; Murakami, M.; Nakagawa, H.; Nitta, K.; Murakami, M. Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry. Earth Planets Space 1998, 50, 313–325. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Bürgmann, R. InSAR constraints on the source parameters of the 2001 Bhuj earthquake. Geophys. Res. Lett. 2006, 33, L02315. [Google Scholar] [CrossRef]
- Stramondo, S.; Moro, M.; Tolomei, C.; Cinti, F.R.; Doumaz, F. InSAR surface displacement field and fault modelling for the 2003 Bam earthquake (southeastern Iran). J. Geodynamics 2005, 40, 347–353. [Google Scholar] [CrossRef]
- Chini, M.; Bignami, C.; Stramondo, S.; Pierdicca, N. Uplift and subsidence due to the 26 December 2004 Indonesian earthquake detected by SAR data. Int. J. Remote Sens. 2008, 29, 3891–3910. [Google Scholar] [CrossRef]
- Kuzuoka, S.; Mizuno, T. Land Deformation Monitoring Using PSInSAR Technique. In Proceedings of International Symposium on Monitoring, Prediction and Mitigation of Disasters by Satellite Remote Sensing, Awaji, Hyogo, Japan, January 2004; pp. 176–181.
- Tsai, Y.B.; Liu, J.Y.; Ma, K.F.; Yen, H.Y.; Chen, K.S.; Chen, Y.I.; Lee, C.P. Precursory phenomena associated with the 1999 Chi-Chi earthquake in Taiwan as identified under iSTEP Program. Phys. Chem. Earth 2006, 31, 365–377. [Google Scholar] [CrossRef]
- de Michele, M.; Raucoulesa, D.; Salichon, J.; Lemoine, A.; Aochia, H. Using INSAR for seismotectonic observations over the Mw 6.3 Parkfield earthquake (28/09/2004), California. In Proceedings of Commission IV ISPRS Congress, Beijing, China, July 2008; Available online: http://www.isprs.org/congresses/beijing2008/proceedings/4_pdf/265.pdf (accessed on 15 November 2009).
- Fielding, E.J.; Lundgren, P.R.; Bürgmann, R.; Funning, G.J. Shallow fault-zone dilatancy recovery after the 2003 Bam, Iran earthquake. Nature 2009, 458, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, S.; Murakami, M.; Kaidzu, M.; Hatanaka, Y. Transient crustal deformation in Tokai region, centeral Japan, until May 2004. Earth Planets Space 2005, 57, 909–915. [Google Scholar] [CrossRef]
- Subarya, C.; Chlieh, M.; Prawirodirdjo, L.; Avouac, J.-P.; Bock, Y.; Sieh, K.; Meltzner, A.J.; Natawidjaja, D.H.; McCaffrey, R. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 2006, 440, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Choosakul, N.; Hashizume, M.; Takemoto, S.; Takiguchi, H.; Fukuda, Y.; Fujimori, K. Crustal deformations associated with the great Sumatra-Andaman earthquake deduced from continuous GPS observation. Earth Planets Space 2006, 58, 127–139. [Google Scholar] [CrossRef]
- Han, S.-C.; Shum, C.K.; Bevis, M.; Ji, C.; Kuo, C.-Y. Crustal Dilatation Observed by GRACE after the 2004 Sumatra-Andaman Earthquake. Science 2006, 313, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Gorny, V.I.; Salman, A.G.; Tronin, A.A.; Shilin, B.V. The earth’s outgoing IR radiation as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 301, 67–69. [Google Scholar]
- Tronin, A.A. Satellite thermal survey—a new tool for the studies of seismoactive regions. Int. J. Remote Sens. 1996, 17, 1439–1455. [Google Scholar] [CrossRef]
- Quang, Z.; Xu, X.; Dian, C. Thermal infrared anomaly precursors of impending earthquakes. Chin. Sci. Bull. 1991, 36, 319–323. [Google Scholar] [CrossRef]
- Qiang, Z.; Du, L.-T. Earth degassing, forest fire and seismic activities. Earth Science Frontiers 2001, 8, 235–245. [Google Scholar]
- Tronin, A.A.; Hayakawa, M.; Molchanov, O.A. Thermal IR satellite data application for earthquake research in Japan and China. J. Geodynamics 2002, 33, 519–534. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, S. Earthquakes and thermal anomalies. Geospatial Today 2003, 2, 18–20. [Google Scholar]
- Singh, R.P.; Ouzounov, D. Earth processes in wake of Gujarat earthquake reviewed from space. EOS Trans. Amer. Geophys. Union 2003, 84, 244. [Google Scholar] [CrossRef]
- Tramutoli, V.; Bello, G.D.; Pergola, N.; Piscitelli, S. Robust satellite techniques for remote sensing of seismically active areas. Ann. Geofis. 2001, 44, 295–312. [Google Scholar]
- CORDIS RTD-PROJECTS. Regular Update of Seismic Hazard Maps through Thermal Space Observations; European Communities: Madrid, Spain, Project Reference: ENV4980741; 2000. [Google Scholar]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2003, 33, 268–273. [Google Scholar] [CrossRef]
- Tronin, A.A.; Biagi, P.F.; Molchanov, O.A.; Khatkevich, Y.M.; Gordeeev, E.I. Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Phys. Chem. Earth 2004, 29, 501–506. [Google Scholar] [CrossRef]
- Saraf, A.K.; Rawat, V.; Banerjee, P.; Choudhury, S.; Panda, S.K.; Dasgupta, S.; Das, J.D. Satellite detection of earthquake thermal precursors in Iran. Nat. Hazard 2008, 47, 119–135. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust AVHRR Techniques (RAT) for environmental monitoring: theory and applications. In Earth Surface Remote Sensing II; Cecchi, G., Zilioli, E, Eds.; SPIE: Barcelona, Spain, 1998; pp. 101–113. [Google Scholar]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas. The case of Kocaeli (İzmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Ouzounov, D.; Bryant, N.; Logan, T.; Pulinets, S.; Taylor, P. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys. Chem. Earth 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, S. NOAA-AVHRR detects thermal anomaly associated with 26 January, 2001 Bhuj Earthquake, Gujarat, India. Int. J. Remote Sens. 2005, 26, 1065–1073. [Google Scholar] [CrossRef]
- Panda, S.K.; Choudhury, S.; Saraf, A.K.; Das, J.D. MODIS land surface temperature data detects thermal anomaly preceding 08 October 2005 Kashmir earthquake. Int. J. Remote Sens. 2007, 28, 4587–4596. [Google Scholar] [CrossRef]
- Wei, L.; Guo, J.; Liu, J.; Lu, Z.; Li, H.; Cai, H. Satellite thermal infrared earthquake precursor to the Wenchuan Ms 8.0 earthquake in Sichuan, China, and its analysis on geodynamics. Acta Geol. Sinica-Engl. Ed. 2009, 83, 767–775. [Google Scholar] [CrossRef]
- Pinty, B.; Gobron, N.; Verstraete, M.M.; Mélin, F.; Widlowski, J.-L.; Govaerts, Y.; Diner, D.J.; Fielding, E.; Nelson, D.L.; Madariaga, R.; Tuttle, M.P. Observing earthquake-related dewatering using MISR/Terra satellite Data. EOS Trans. Amer. Geophys. Union 2003, 84, 37–48. [Google Scholar] [CrossRef]
- Dey, S.; Singh, R.P. Surface latent heat flux as an earthquake precursor. Nat. Hazards Earth Syst. 2003, 3, 749–755. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Ciraolo, L.; Singh, R.; Cervone, G.; Leyva, A.; Dunajecka, M.; Karelin, A.V.; Boyarchuk, K.A.; Kotsarenko, A. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann. Geophys. 2006, 24, 835–849. [Google Scholar] [CrossRef]
- Cervone, G.; Maekawa, S.; Singh, R.; Hayakawa, M.; Kafatos, M.; Shavets, A. Surface latent heat flux and nighttime LF anomalies prior to the Mw = 8.3 Tokachi-Oki earthquake. Nat. Hazards Earth Syst. Sci. 2006, 6, 109–114. [Google Scholar] [CrossRef]
- Ma, W.; Ma, W.; Zhao, H.; Li, H. Temperature changing process of the Hokkaido (Japan) earthquake on 25 September 2003. Nat. Hazards Earth Syst. Sci. 2008, 8, 985–989. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Singh, R.P.; Bhoi, S.; Sahoo, A.K. Changes observed on land and ocean after Gujarat earthquake of January 26, 2001 using IRS data. Int. J. Remote Sens. 2002, 23, 3123–3128. [Google Scholar] [CrossRef]
- Singh, R.P.; Cervone, G.; Kafatos, M.; Prasad, A.K.; Sahoo, A.K.; Sun, D.; Tang, D.L.; Yang, R. Multi-sensor studies of the Sumatra earthquake and tsunami of 26 December 2004. Int. J. Remote Sens. 2007, 28, 2885–2896. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Kang, C.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Dey, S.; Sarkar, S.; Singh, R.P. Anomalous changes in column water vapor after Gujarat earthquake. Adv. Space Res. 2004, 33, 274–278. [Google Scholar] [CrossRef]
- Okada, Y.; Mukai, S.; Singh, R.P. Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001. Adv. Space Res. 2004, 33, 254–258. [Google Scholar] [CrossRef]
- Tronin, A.A. Atmosphere-litosphere coupling. Thermal anomalies on the earth surface in seismic processes. In Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002; pp. 173–176. [Google Scholar]
- Morozova, L.I. Features of atmo-lithmospheric relationships during periods of strong Asian earthquakes. Izvestiya, Phys. Solid Earth 1996, 5, 63–68. [Google Scholar]
- Guo, G.; Wang, B. Cloud anomaly before Iran earthquake. Int. J. Remote Sens. 2008, 29, 1921–1928. [Google Scholar] [CrossRef]
- Gup, G.; Xie, G. Earthquake cloud over Japan detected by satellite. Int. J. Remote Sens. 2007, 28, 5375–5376. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Parrot, M. The micro-satelitte DEMETER. J. Geodynamics 2002, 33, 535–541. [Google Scholar] [CrossRef]
- Molchanov, O.; Rozhnoi, A.; Solovieva, M.; Akentieva, O.; Berthelier, J.J.; Parrot, M.; Lefeuvre, F.; Biagi, P.F.; Castellana, L.; Hayakawa, M. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazards Earth Syst. Sci. 2006, 6, 745–753. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolík, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Liu, J.; Chuo, Y.; Shan, S.; Tsai, Y.; Chen, Y.; Pulinets, S.; Yu, S. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tsai, Y.B.; Chen, S.W.; Lee, C.P.; Chen, Y.C.; Yen, H.Y.; Chang, W.Y.; Liu, C. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett. 2006, 33, L02103. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Tsai, Y.-B.; Ma, K.-F.; Chen, Y.-I.; Tsai, H.-F.; Lin, C.-H.; Kamogawa, M.; Lee, C.-P. Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J. Geophys. Res. 2006, 111, A05303. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; Lin, C.H. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tronin, A.A. Satellite Remote Sensing in Seismology. A Review. Remote Sens. 2010, 2, 124-150. https://doi.org/10.3390/rs2010124
Tronin AA. Satellite Remote Sensing in Seismology. A Review. Remote Sensing. 2010; 2(1):124-150. https://doi.org/10.3390/rs2010124
Chicago/Turabian StyleTronin, Andrew A. 2010. "Satellite Remote Sensing in Seismology. A Review" Remote Sensing 2, no. 1: 124-150. https://doi.org/10.3390/rs2010124
APA StyleTronin, A. A. (2010). Satellite Remote Sensing in Seismology. A Review. Remote Sensing, 2(1), 124-150. https://doi.org/10.3390/rs2010124