Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Selection and Preparation
Coordinates UTM 12n | ||||
---|---|---|---|---|
Date | Sensor | Path/Row | Xmin/Xmax | Ymin/Ymax |
26/09/2004 | ETM+ | 35/41 | 378836/627698 | 2925339/3143530 |
26/10/2004 | ETM+ | 34/41 | 532793/776867 | 2927049/3143763 |
08/10/2004 | ETM+ | 34/42 | 608574/710205 | 2809971/2974131 |
14/10/2004 | ETM+ | 33/42 | 667113/788780 | 2783238/2853662 |
3.2. Classification Procedure
3.2.1. Definition of the Thematic Categories and Training Areas
3.2.2. Image Classification and Validation
Observed | |||
---|---|---|---|
Y1 | Y0 | ||
Predicted | Y’1 | a | b |
Y’0 | c | d |
4. Results and Discussion
4.1. Selection of Categories and Training Areas
Observed categories | Mangrove forest | Mangrove forest with pickleweed | Pickleweed | Scattered vegetation | Bare soil | Very shallow water area | Open water area | Total (pixels) | |
---|---|---|---|---|---|---|---|---|---|
Predicted categories | Mangrove forest | 0.81 | 0.12 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 864 |
Mangrove forest with pickleweed | 0.10 | 0.78 | 0.15 | 0.04 | 0.00 | 0.00 | 0.00 | 551 | |
Pickleweed | 0.07 | 0.05 | 0.75 | 0.08 | 0.03 | 0.00 | 0.00 | 566 | |
Scattered vegetation | 0.00 | 0.02 | 0.01 | 0.79 | 0.06 | 0.00 | 0.00 | 749 | |
Bare soil | 0.00 | 0.01 | 0.00 | 0.09 | 0.91 | 0.05 | 0.01 | 1,589 | |
Very shallow water area | 0.01 | 0.01 | 0.01 | 0.00 | 00.0 | 0.83 | 0.04 | 465 | |
Open water area | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.12 | 0.95 | 3,349 |
4.2. Thematic Classification
Observed categories | Mangrove forest | Mangrove forest with pickleweed | Pickleweed | Scattered vegetation | Bare soil | Very shallow water area | Open water area | Total (pixels) | Commission error (%) | Specificity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted categories | Mangrove forest | 0.87 | 0.09 | 0.08 | 0.00 | 0.00 | 0.06 | 0.01 | 95 | 23 | 0.770 |
Mangrove forest with pickleweed | 0.03 | 0.75 | 0.1 | 0.00 | 0.00 | 0.00 | 0.01 | 36 | 14 | 0.860 | |
Pickleweed | 0.10 | 0.16 | 0.82 | 0.02 | 0.05 | 0.00 | 0.00 | 52 | 33 | 0.670 | |
Scattered vegetation | 0.00 | 0.00 | 0.00 | 0.86 | 0.11 | 0.00 | 0.00 | 132 | 11 | 0.890 | |
Bare soil | 0.00 | 0.00 | 0.00 | 0.12 | 0.84 | 0.00 | 0.00 | 264 | 12 | 0.880 | |
Very shallow water area | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.80 | 0.04 | 12 | 4 | 0.960 | |
Open water area | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.94 | 78 | 14 | 0.860 | |
Total | 15.86 | 0.841 | |||||||||
Omission error (%) | 0.13 | 0.25 | 0.18 | 0.14 | 0.16 | 0.20 | 0.06 | 0.16 | |||
Sensitivity | 0.871 | 0.750 | 0.822 | 0.860 | 0.836 | 0.800 | 0.940 | 0.840 |
4.3. Maps of Mangrove and Non-Mangrove Areas
5. Conclusions
Acknowledgments
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Sánchez-Carrillo, S.; Sánchez-Andrés, R.; Alatorre, L.C.; Angeler, D.G.; Álvarez-Cobelas, M.; Arreola-Lizárraga, J.A. Nutrient fluxes in a semi-arid microtidal mangrove wetland in the Gulf of California. Estuar. Coast. Shelf Sci. 2009, 82, 654–662. [Google Scholar] [CrossRef]
- Varnell, L.M.; Evans, D.A.; Havens, K.J. A geomorphological model of intertidal cove marshes with application to wetlands management. Ecol. Eng. 2003, 19, 339–347. [Google Scholar] [CrossRef]
- Lee, H.Y.; Shih, S.S. Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecol. Eng. 2004, 23, 85–94. [Google Scholar] [CrossRef]
- Willis, J.M.; Hester, M.W.; Shaffer, G.P. A mesocosm evaluation of processed drill cuttings for wetland restoration. Ecol. Eng. 2005, 25, 41–50. [Google Scholar] [CrossRef]
- Lewis, R.R., III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Zhou, G. Influences of tropical forest changes on environmental quality in Hainan province, P.R. of China. Ecol. Eng. 1995, 4, 223–229. [Google Scholar]
- Blasco, F.; Saenger, P.; Janodet, E. Mangroves as indicators of costal change. Catena 1996, 27, 167–178. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Dahdouh-Guebas, F.; Mathenge, C.; Kairo, J.G.; Koedam, N. Utilization of mangrove wood products around Mida Creek (Kenya) amongst subsistence and commercial users. Econ. Bot. 2000, 54, 513–527. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Acosta-Velázquez, J.; Berlanga-Robles, C.A. On the reliability of the data of the extent of mangroves: A case study in Mexico. Ocean Coast. Manag. 2008, 51, 342–351. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Berlanga-Robles, C.A. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landsc. Ecol. 2003, 18, 159–171. [Google Scholar] [CrossRef]
- Spalding, M.D.; Blasco, F.; Field, C.D. World Mangrove Atlas; The International Society for Mangrove Ecosystems: Okinawa, Japan, 1997; p. 178. [Google Scholar]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Aizpuru, M.; Achard, F.; Blasco, F. Global Assessment of Cover Change of the Mangrove Forest Using Satellite Imagery at Medium to High Resolution; EEC Research Project No 15017-1999-05 FIED ISP FR; Joint Research Center: Ispra, Italy, 2000. [Google Scholar]
- Blasco, F.; Aizpuru, M. Mangroves along the coastal stretch of the Bay of Bengal: Present status. Indian J. Mar. Sci. 2002, 31, 9–20. [Google Scholar]
- Gao, J. A comparative study on spatial and spectral resolutions of satellite data mapping in mangrove forests. Int. J. Remote Sens. 1999, 20, 2823–2833. [Google Scholar] [CrossRef]
- Haito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf. Int. J. Remote Sens. 2003, 24, 4073–4092. [Google Scholar]
- Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [Google Scholar] [CrossRef]
- Green, E.; Mumby, P. Mapping mangroves. In Remote Sensing Handbook for Tropical Coastal Management; Edwards, A.J., Ed.; UNESCO: Paris, France, 2000; pp. 183–198. [Google Scholar]
- Green, E.P.; Mumby, P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. The assessment of mangrove area using high resolution multispectral airborne imagery. J. Coast. Res. 1998, 14, 433–443. [Google Scholar]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. Estimating leaf area index of mangroves from satellite data. Aquat. Bot. 1997, 58, 11–19. [Google Scholar] [CrossRef]
- Jensen, J.R.; Ramsey, E.; Davis, B.A.; Thoemke, C.W. The measurement of mangrove characteristics in south-west Florida using SPOT multispectral data. Geocarto Int. 1991, 2, 13–21. [Google Scholar] [CrossRef]
- Ramsey, E.W., III; Jensen, J.R. Remote sensing of mangrove wetlands: Relating canopy spectra to site-specific data. Photogramm. Eng. Remote Sensing 1996, 62, 939–948. [Google Scholar]
- Allison, M.A.; Lee, M.T. Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Mar. Geol. 2004, 208, 169–190. [Google Scholar] [CrossRef]
- Bird, M.; Chua, S.; Fifield, L.K.; Teh, T.S.; Lai, J. Evolution of the Sungei Buloh-Kranji mangrove coast, Singapore. Appl. Geogr. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Chen, T.S. A remote sensing imagery analysis for the Tatu esturary. Endem. Species Res. 2002, 4, 61–74. [Google Scholar]
- Fromard, F.; Vega, C.; Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar. Geol. 2004, 208, 265–280. [Google Scholar] [CrossRef]
- Nakamura, F.; Kameyama, S.; Mizugaki, S. Rapid shrinkage of Kushiro Mire, the largest mire in Japan, due to increased sedimentation associated with land-use development in the catchment. Catena 2004, 55, 213–229. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, B.; Zhang, S.Q.; Li, X.Y.; Liu, D.W.; Song, K.S.; Li, J.P.; Li, F.; Duan, H.T. Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.J.; Chen, J.K.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Murray, M.R.; Zisman, S.A.; Furley, P.A.; Munro, D.M.; Gibson, J.; Ratter, J.; Bridgewater, S.; Minty, C.D.; Place, C.J. The mangroves of Belize: Part 1. Distribution, composition and classification. For. Ecol. Manag. 2003, 174, 265–279. [Google Scholar] [CrossRef]
- Ramírez-García, P.; López-Blanco, J.; Ocaña, D. Mangrove vegetation assessment in the Santiago River Mouth, Mexico, by means of supervised classification using Landsat TM imagery. For. Ecol. Manag. 1998, 105, 217–229. [Google Scholar] [CrossRef]
- Blasco, F.; Aizpuru, M.; Din Ndongo, D. Mangroves, Remote Sensing. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2005; pp. 614–617. [Google Scholar]
- Soto-Jimenez, M.F.; Paez-Osuna, F. Distribution and normalization of heavy metal concentration in mangrove and lagoonal sediments from Mazatlan Harbor (SE Gulf of California). Estuar. Coast. Shelf Sci. 2001, 53, 259–274. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Berlanga-Robles, C.A. Modifications in Coverage Patterns and Land Use around the Huizache-Caimanero Lagoon System, Sinaloa, Mexico: A Multi-temporal Analysis using LANDSAT Images. Estuar. Coast. Shelf Sci. 1999, 49, 37–44. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Beguería, S. Identification of eroded areas using remote sensing in a badlands landscape on marls in the central Spanish Pyrenees. Catena 2009, 76, 182–190. [Google Scholar] [CrossRef]
- Yoda, K.; Kira, T.; Ogawa, H.; Hozumi, K. Intraspecific competition among higher plants. IX. Self-thinning in overcrowded pure stands under cultivation and natural conditions. J. Biol. 1963, 14, 107–109. [Google Scholar]
- Palá, V.; Pons, X. Incorporation of relief in polynomial-based geometric corrections. Photogramm. Eng. Remote Sensing 1996, 61, 935–944. [Google Scholar]
- INEGI. National Institute of Statistic and Geography, Mexico. Available online: www.inegi.gob.mx (accessed on 18 July 2011).
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Peréz-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Cintron, G.; Lugo, A.E.; Pool, D.J.; Morris, G. Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 1978, 10, 110–121. [Google Scholar] [CrossRef]
- Beguería, S. Identifying erosion areas at basin scale using remote sensing data and GIS. Int. J. Remote Sens. 2006, 20, 4585–4598. [Google Scholar] [CrossRef]
- Beguería, S. Validation and evaluation of predicitive models in hazard assessment and risk management. Nat. Hazards 2006, 37, 315–329. [Google Scholar] [CrossRef]
- Deleo, J.M. Receiver Operating Characteristic Laboratory (ROCLAB): Software for Developing Decision Strategies that Account for Uncertainty. In Proceedings of the Second International Symposium on Uncertainty Modelling and Analysis, College Park, MD, USA, 25–28 April 1993; pp. 318–325.
- Fawcett, T. An introduction to ROC analysis. Pattern Recog. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Ripple, W.J. Landsat Thematic Mapper bands for characterizing fescue grass vegetation. Int. J. Remote Sens. 1985, 8, 1373–1384. [Google Scholar] [CrossRef]
- Onuf, C.P. Aspects of the biology of Salicornia Bigelovil Torr. in relation to a proposed restoration of a wind-tidal flat system on the south Texas, USA coast. Wetlands 2006, 26, 649–666. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alatorre, L.C.; Sánchez-Andrés, R.; Cirujano, S.; Beguería, S.; Sánchez-Carrillo, S. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sens. 2011, 3, 1568-1583. https://doi.org/10.3390/rs3081568
Alatorre LC, Sánchez-Andrés R, Cirujano S, Beguería S, Sánchez-Carrillo S. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sensing. 2011; 3(8):1568-1583. https://doi.org/10.3390/rs3081568
Chicago/Turabian StyleAlatorre, Luis C., Raquel Sánchez-Andrés, Santos Cirujano, Santiago Beguería, and Salvador Sánchez-Carrillo. 2011. "Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery" Remote Sensing 3, no. 8: 1568-1583. https://doi.org/10.3390/rs3081568
APA StyleAlatorre, L. C., Sánchez-Andrés, R., Cirujano, S., Beguería, S., & Sánchez-Carrillo, S. (2011). Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sensing, 3(8), 1568-1583. https://doi.org/10.3390/rs3081568